# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List, Union from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters MOD_NAMES = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder', 'tensor': 'TensorEmbedder'} class InputEmbedderParameters(NetworkComponentParameters): def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium, batchnorm: bool=False, dropout_rate: float=0.0, name: str='embedder', input_rescaling=None, input_offset=None, input_clipping=None, dense_layer=None, is_training=False, flatten=True): super().__init__(dense_layer=dense_layer) self.activation_function = activation_function self.scheme = scheme self.batchnorm = batchnorm self.dropout_rate = dropout_rate if input_rescaling is None: input_rescaling = {'image': 255.0, 'vector': 1.0, 'tensor': 1.0} if input_offset is None: input_offset = {'image': 0.0, 'vector': 0.0, 'tensor': 0.0} self.input_rescaling = input_rescaling self.input_offset = input_offset self.input_clipping = input_clipping self.name = name self.is_training = is_training self.flatten = flatten def path(self, emb_type): return 'rl_coach.architectures.tensorflow_components.embedders:' + MOD_NAMES[emb_type]