from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters from rl_coach.architectures.layers import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, DistributedCoachSynchronizationType from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000) schedule_params.steps_between_evaluation_periods = EnvironmentSteps(2048) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = ClippedPPOAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.0003 agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'tanh' agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense(64)] agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense(64)] agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'tanh' agent_params.network_wrappers['main'].batch_size = 64 agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5 agent_params.network_wrappers['main'].adam_optimizer_beta2 = 0.999 agent_params.algorithm.clip_likelihood_ratio_using_epsilon = 0.2 agent_params.algorithm.clipping_decay_schedule = LinearSchedule(1.0, 0, 1000000) agent_params.algorithm.beta_entropy = 0 agent_params.algorithm.gae_lambda = 0.95 agent_params.algorithm.discount = 0.99 agent_params.algorithm.optimization_epochs = 10 agent_params.algorithm.estimate_state_value_using_gae = True # Distributed Coach synchronization type. agent_params.algorithm.distributed_coach_synchronization_type = DistributedCoachSynchronizationType.SYNC agent_params.input_filter = InputFilter() agent_params.exploration = AdditiveNoiseParameters() agent_params.pre_network_filter = InputFilter() agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation', ObservationNormalizationFilter(name='normalize_observation')) ############### # Environment # ############### env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2)) # Set the target success env_params.target_success_rate = 1.0 ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 1000 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)