# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from agents.value_optimization_agent import * from agents.policy_optimization_agent import * from logger import * from utils import * import scipy.signal # N Step Q Learning Agent - https://arxiv.org/abs/1602.01783 class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=True) self.last_gradient_update_step_idx = 0 self.q_values = Signal('Q Values') self.unclipped_grads = Signal('Grads (unclipped)') self.signals.append(self.q_values) self.signals.append(self.unclipped_grads) def learn_from_batch(self, batch): # batch contains a list of episodes to learn from current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch) # get the values for the current states state_value_head_targets = self.main_network.online_network.predict(current_states) # the targets for the state value estimator num_transitions = len(game_overs) if self.tp.agent.targets_horizon == '1-Step': # 1-Step Q learning q_st_plus_1 = self.main_network.target_network.predict(next_states) for i in reversed(range(num_transitions)): state_value_head_targets[i][actions[i]] = \ rewards[i] + (1.0 - game_overs[i]) * self.tp.agent.discount * np.max(q_st_plus_1[i], 0) elif self.tp.agent.targets_horizon == 'N-Step': # N-Step Q learning if game_overs[-1]: R = 0 else: R = np.max(self.main_network.target_network.predict(np.expand_dims(next_states[-1], 0))) for i in reversed(range(num_transitions)): R = rewards[i] + self.tp.agent.discount * R state_value_head_targets[i][actions[i]] = R else: assert True, 'The available values for targets_horizon are: 1-Step, N-Step' # train result = self.main_network.online_network.accumulate_gradients([current_states], [state_value_head_targets]) # logging total_loss, losses, unclipped_grads = result[:3] self.unclipped_grads.add_sample(unclipped_grads) logger.create_signal_value('Value Loss', losses[0]) return total_loss def train(self): # update the target network of every network that has a target network if self.total_steps_counter % self.tp.agent.num_steps_between_copying_online_weights_to_target == 0: for network in self.networks: network.update_target_network(self.tp.agent.rate_for_copying_weights_to_target) logger.create_signal_value('Update Target Network', 1) else: logger.create_signal_value('Update Target Network', 0, overwrite=False) return PolicyOptimizationAgent.train(self)