# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from agents import value_optimization_agent as voa # Categorical Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf class CategoricalDQNAgent(voa.ValueOptimizationAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id) self.z_values = np.linspace(self.tp.agent.v_min, self.tp.agent.v_max, self.tp.agent.atoms) # prediction's format is (batch,actions,atoms) def get_q_values(self, prediction): return np.dot(prediction, self.z_values) def learn_from_batch(self, batch): current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch) # for the action we actually took, the error is calculated by the atoms distribution # for all other actions, the error is 0 distributed_q_st_plus_1 = self.main_network.target_network.predict(next_states) # initialize with the current prediction so that we will TD_targets = self.main_network.online_network.predict(current_states) # only update the action that we have actually done in this transition target_actions = np.argmax(self.get_q_values(distributed_q_st_plus_1), axis=1) m = np.zeros((self.tp.batch_size, self.z_values.size)) batches = np.arange(self.tp.batch_size) for j in range(self.z_values.size): tzj = np.fmax(np.fmin(rewards + (1.0 - game_overs) * self.tp.agent.discount * self.z_values[j], self.z_values[self.z_values.size - 1]), self.z_values[0]) bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0]) u = (np.ceil(bj)).astype(int) l = (np.floor(bj)).astype(int) m[batches, l] = m[batches, l] + (distributed_q_st_plus_1[batches, target_actions, j] * (u - bj)) m[batches, u] = m[batches, u] + (distributed_q_st_plus_1[batches, target_actions, j] * (bj - l)) # total_loss = cross entropy between actual result above and predicted result for the given action TD_targets[batches, actions] = m result = self.main_network.train_and_sync_networks(current_states, TD_targets) total_loss = result[0] return total_loss