# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from copy import deepcopy from typing import Union, List, Dict import numpy as np from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters, DQNAgent from rl_coach.base_parameters import Parameters from rl_coach.core_types import EnvironmentSteps, Batch, StateType from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager from rl_coach.logger import screen from rl_coach.memories.non_episodic.differentiable_neural_dictionary import AnnoyDictionary from rl_coach.schedules import LinearSchedule class NNImitationModelParameters(Parameters): """ A parameters module grouping together parameters related to a neural network based action selection. """ def __init__(self): super().__init__() self.imitation_model_num_epochs = 100 self.mask_out_actions_threshold = 0.35 class KNNParameters(Parameters): """ A parameters module grouping together parameters related to a k-Nearest Neighbor based action selection. """ def __init__(self): super().__init__() self.average_dist_coefficient = 1 self.knn_size = 50000 self.use_state_embedding_instead_of_state = True # useful when the state is too big to be used for kNN class DDQNBCQAlgorithmParameters(DQNAlgorithmParameters): """ :param action_drop_method_parameters: (Parameters) Defines the mode and related parameters according to which low confidence actions will be filtered out :param num_steps_between_copying_online_weights_to_target (StepMethod) Defines the number of steps between every phase of copying online network's weights to the target network's weights """ def __init__(self): super().__init__() self.action_drop_method_parameters = KNNParameters() self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(30000) class DDQNBCQAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm = DDQNBCQAlgorithmParameters() self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.exploration.evaluation_epsilon = 0.001 @property def path(self): return 'rl_coach.agents.ddqn_bcq_agent:DDQNBCQAgent' # Double DQN - https://arxiv.org/abs/1509.06461 # (a variant on) BCQ - https://arxiv.org/pdf/1812.02900v2.pdf class DDQNBCQAgent(DQNAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) if isinstance(self.ap.algorithm.action_drop_method_parameters, KNNParameters): self.knn_trees = [] # will be filled out later, as we don't have the action space size yet self.average_dist = 0 def to_embedding(states: Union[List[StateType], Dict]): if isinstance(states, list): states = self.prepare_batch_for_inference(states, 'reward_model') if self.ap.algorithm.action_drop_method_parameters.use_state_embedding_instead_of_state: return self.networks['reward_model'].online_network.predict( states, outputs=[self.networks['reward_model'].online_network.state_embedding]) else: return states['observation'] self.embedding = to_embedding elif isinstance(self.ap.algorithm.action_drop_method_parameters, NNImitationModelParameters): if 'imitation_model' not in self.ap.network_wrappers: # user hasn't defined params for the reward model. we will use the same params as used for the 'main' # network. self.ap.network_wrappers['imitation_model'] = deepcopy(self.ap.network_wrappers['reward_model']) else: raise ValueError('Unsupported action drop method {} for DDQNBCQAgent'.format( type(self.ap.algorithm.action_drop_method_parameters))) def select_actions(self, next_states, q_st_plus_1): if isinstance(self.ap.algorithm.action_drop_method_parameters, KNNParameters): familiarity = np.array([[distance[0] for distance in knn_tree._get_k_nearest_neighbors_indices(self.embedding(next_states), 1)[0]] for knn_tree in self.knn_trees]).transpose() actions_to_mask_out = familiarity > self.ap.algorithm.action_drop_method_parameters.average_dist_coefficient \ * self.average_dist elif isinstance(self.ap.algorithm.action_drop_method_parameters, NNImitationModelParameters): familiarity = self.networks['imitation_model'].online_network.predict(next_states) actions_to_mask_out = familiarity < \ self.ap.algorithm.action_drop_method_parameters.mask_out_actions_threshold else: raise ValueError('Unsupported action drop method {} for DDQNBCQAgent'.format( type(self.ap.algorithm.action_drop_method_parameters))) masked_next_q_values = self.networks['main'].online_network.predict(next_states) masked_next_q_values[actions_to_mask_out] = -np.inf # occassionaly there are states in the batch for which our model shows no confidence for either of the actions # in that case, we will just randomly assign q_values to actions, since otherwise argmax will always return # the first action zero_confidence_rows = (masked_next_q_values.max(axis=1) == -np.inf) masked_next_q_values[zero_confidence_rows] = np.random.rand(np.sum(zero_confidence_rows), masked_next_q_values.shape[1]) return np.argmax(masked_next_q_values, 1) def improve_reward_model(self, epochs: int): """ Train both a reward model to be used by the doubly-robust estimator, and some model to be used for BCQ :param epochs: The total number of epochs to use for training a reward model :return: None """ # we'll be assuming that these gets drawn from the reward model parameters batch_size = self.ap.network_wrappers['reward_model'].batch_size network_keys = self.ap.network_wrappers['reward_model'].input_embedders_parameters.keys() # if using a NN to decide which actions to drop, we'll train the NN here if isinstance(self.ap.algorithm.action_drop_method_parameters, NNImitationModelParameters): total_epochs = max(epochs, self.ap.algorithm.action_drop_method_parameters.imitation_model_num_epochs) else: total_epochs = epochs for epoch in range(total_epochs): # this is fitted from the training dataset reward_model_loss = 0 imitation_model_loss = 0 total_transitions_processed = 0 for i, batch in enumerate(self.call_memory('get_shuffled_data_generator', batch_size)): batch = Batch(batch) # reward model if epoch < epochs: reward_model_loss += self.get_reward_model_loss(batch) # imitation model if isinstance(self.ap.algorithm.action_drop_method_parameters, NNImitationModelParameters) and \ epoch < self.ap.algorithm.action_drop_method_parameters.imitation_model_num_epochs: target_actions = np.zeros((batch.size, len(self.spaces.action.actions))) target_actions[range(batch.size), batch.actions()] = 1 imitation_model_loss += self.networks['imitation_model'].train_and_sync_networks( batch.states(network_keys), target_actions)[0] total_transitions_processed += batch.size log = OrderedDict() log['Epoch'] = epoch if reward_model_loss: log['Reward Model Loss'] = reward_model_loss / total_transitions_processed if imitation_model_loss: log['Imitation Model Loss'] = imitation_model_loss / total_transitions_processed screen.log_dict(log, prefix='Training Batch RL Models') # if using a kNN based model, we'll initialize and build it here. # initialization cannot be moved to the constructor as we don't have the agent's spaces initialized yet. if isinstance(self.ap.algorithm.action_drop_method_parameters, KNNParameters): knn_size = self.ap.algorithm.action_drop_method_parameters.knn_size if self.ap.algorithm.action_drop_method_parameters.use_state_embedding_instead_of_state: self.knn_trees = [AnnoyDictionary( dict_size=knn_size, key_width=int(self.networks['reward_model'].online_network.state_embedding.shape[-1]), batch_size=knn_size) for _ in range(len(self.spaces.action.actions))] else: self.knn_trees = [AnnoyDictionary( dict_size=knn_size, key_width=self.spaces.state['observation'].shape[0], batch_size=knn_size) for _ in range(len(self.spaces.action.actions))] for i, knn_tree in enumerate(self.knn_trees): state_embeddings = self.embedding([transition.state for transition in self.memory.transitions if transition.action == i]) knn_tree.add( keys=state_embeddings, values=np.expand_dims(np.zeros(state_embeddings.shape[0]), axis=1)) for knn_tree in self.knn_trees: knn_tree._rebuild_index() self.average_dist = [[dist[0] for dist in knn_tree._get_k_nearest_neighbors_indices( keys=self.embedding([transition.state for transition in self.memory.transitions]), k=1)[0]] for knn_tree in self.knn_trees] self.average_dist = sum([x for l in self.average_dist for x in l]) # flatten and sum self.average_dist /= len(self.memory.transitions) def set_session(self, sess) -> None: super().set_session(sess) # we check here if we are in batch-rl, since this is the only place where we have a graph_manager to question assert isinstance(self.parent_level_manager.parent_graph_manager, BatchRLGraphManager),\ 'DDQNBCQ agent can only be used in BatchRL'