# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.head_parameters import QHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.base_parameters import AlgorithmParameters, AgentParameters, NetworkParameters from rl_coach.core_types import EnvironmentSteps from rl_coach.exploration_policies.e_greedy import EGreedyParameters from rl_coach.memories.episodic.single_episode_buffer import SingleEpisodeBufferParameters from rl_coach.utils import last_sample class NStepQNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters() self.heads_parameters = [QHeadParameters()] self.optimizer_type = 'Adam' self.async_training = True self.shared_optimizer = True self.create_target_network = True class NStepQAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000) self.apply_gradients_every_x_episodes = 1 self.num_steps_between_gradient_updates = 5 # this is called t_max in all the papers self.targets_horizon = 'N-Step' class NStepQAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=NStepQAlgorithmParameters(), exploration=EGreedyParameters(), memory=SingleEpisodeBufferParameters(), networks={"main": NStepQNetworkParameters()}) @property def path(self): return 'rl_coach.agents.n_step_q_agent:NStepQAgent' # N Step Q Learning Agent - https://arxiv.org/abs/1602.01783 class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.last_gradient_update_step_idx = 0 self.q_values = self.register_signal('Q Values') self.value_loss = self.register_signal('Value Loss') def learn_from_batch(self, batch): # batch contains a list of episodes to learn from network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # get the values for the current states state_value_head_targets = self.networks['main'].online_network.predict(batch.states(network_keys)) # the targets for the state value estimator if self.ap.algorithm.targets_horizon == '1-Step': # 1-Step Q learning q_st_plus_1 = self.networks['main'].target_network.predict(batch.next_states(network_keys)) for i in reversed(range(batch.size)): state_value_head_targets[i][batch.actions()[i]] = \ batch.rewards()[i] \ + (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * np.max(q_st_plus_1[i], 0) elif self.ap.algorithm.targets_horizon == 'N-Step': # N-Step Q learning if batch.game_overs()[-1]: R = 0 else: R = np.max(self.networks['main'].target_network.predict(last_sample(batch.next_states(network_keys)))) for i in reversed(range(batch.size)): R = batch.rewards()[i] + self.ap.algorithm.discount * R state_value_head_targets[i][batch.actions()[i]] = R else: assert True, 'The available values for targets_horizon are: 1-Step, N-Step' # train result = self.networks['main'].online_network.accumulate_gradients(batch.states(network_keys), [state_value_head_targets]) # logging total_loss, losses, unclipped_grads = result[:3] self.value_loss.add_sample(losses[0]) return total_loss, losses, unclipped_grads def train(self): # update the target network of every network that has a target network if any([network.has_target for network in self.networks.values()]) \ and self._should_update_online_weights_to_target(): for network in self.networks.values(): network.update_target_network(self.ap.algorithm.rate_for_copying_weights_to_target) self.agent_logger.create_signal_value('Update Target Network', 1) else: self.agent_logger.create_signal_value('Update Target Network', 0, overwrite=False) return PolicyOptimizationAgent.train(self)