# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.categorical_dqn_agent import CategoricalDQNAlgorithmParameters, \ CategoricalDQNAgent, CategoricalDQNAgentParameters from rl_coach.agents.dqn_agent import DQNNetworkParameters from rl_coach.architectures.head_parameters import RainbowQHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.base_parameters import MiddlewareScheme from rl_coach.exploration_policies.parameter_noise import ParameterNoiseParameters from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters, \ PrioritizedExperienceReplay class RainbowDQNNetworkParameters(DQNNetworkParameters): def __init__(self): super().__init__() self.heads_parameters = [RainbowQHeadParameters()] self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty) class RainbowDQNAlgorithmParameters(CategoricalDQNAlgorithmParameters): def __init__(self): super().__init__() self.n_step = 3 # needed for n-step updates to work. i.e. waiting for a full episode to be closed before storing each transition self.store_transitions_only_when_episodes_are_terminated = True class RainbowDQNAgentParameters(CategoricalDQNAgentParameters): def __init__(self): super().__init__() self.algorithm = RainbowDQNAlgorithmParameters() self.exploration = ParameterNoiseParameters(self) self.memory = PrioritizedExperienceReplayParameters() self.network_wrappers = {"main": RainbowDQNNetworkParameters()} @property def path(self): return 'rl_coach.agents.rainbow_dqn_agent:RainbowDQNAgent' # Rainbow Deep Q Network - https://arxiv.org/abs/1710.02298 # Agent implementation is composed of: # 1. NoisyNets # 2. C51 # 3. Prioritized ER # 4. DDQN # 5. Dueling DQN # 6. N-step returns class RainbowDQNAgent(CategoricalDQNAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() ddqn_selected_actions = np.argmax(self.distribution_prediction_to_q_values( self.networks['main'].online_network.predict(batch.next_states(network_keys))), axis=1) # for the action we actually took, the error is calculated by the atoms distribution # for all other actions, the error is 0 distributional_q_st_plus_n, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # only update the action that we have actually done in this transition (using the Double-DQN selected actions) target_actions = ddqn_selected_actions m = np.zeros((self.ap.network_wrappers['main'].batch_size, self.z_values.size)) batches = np.arange(self.ap.network_wrappers['main'].batch_size) for j in range(self.z_values.size): # we use batch.info('should_bootstrap_next_state') instead of (1 - batch.game_overs()) since with n-step, # we will not bootstrap for the last n-step transitions in the episode tzj = np.fmax(np.fmin(batch.n_step_discounted_rewards() + batch.info('should_bootstrap_next_state') * (self.ap.algorithm.discount ** self.ap.algorithm.n_step) * self.z_values[j], self.z_values[-1]), self.z_values[0]) bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0]) u = (np.ceil(bj)).astype(int) l = (np.floor(bj)).astype(int) m[batches, l] += (distributional_q_st_plus_n[batches, target_actions, j] * (u - bj)) m[batches, u] += (distributional_q_st_plus_n[batches, target_actions, j] * (bj - l)) # total_loss = cross entropy between actual result above and predicted result for the given action TD_targets[batches, batch.actions()] = m # update errors in prioritized replay buffer importance_weights = batch.info('weight') if isinstance(self.memory, PrioritizedExperienceReplay) else None result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets, importance_weights=importance_weights) total_loss, losses, unclipped_grads = result[:3] # TODO: fix this spaghetti code if isinstance(self.memory, PrioritizedExperienceReplay): errors = losses[0][np.arange(batch.size), batch.actions()] self.call_memory('update_priorities', (batch.info('idx'), errors)) return total_loss, losses, unclipped_grads