# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.agent import Agent from rl_coach.core_types import ActionInfo, StateType from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay from rl_coach.spaces import DiscreteActionSpace ## This is an abstract agent - there is no learn_from_batch method ## class ValueOptimizationAgent(Agent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.q_values = self.register_signal("Q") self.q_value_for_action = {} def init_environment_dependent_modules(self): super().init_environment_dependent_modules() if isinstance(self.spaces.action, DiscreteActionSpace): for i in range(len(self.spaces.action.actions)): self.q_value_for_action[i] = self.register_signal("Q for action {}".format(i), dump_one_value_per_episode=False, dump_one_value_per_step=True) # Algorithms for which q_values are calculated from predictions will override this function def get_all_q_values_for_states(self, states: StateType): if self.exploration_policy.requires_action_values(): actions_q_values = self.get_prediction(states) else: actions_q_values = None return actions_q_values def get_prediction(self, states): return self.networks['main'].online_network.predict(self.prepare_batch_for_inference(states, 'main')) def update_transition_priorities_and_get_weights(self, TD_errors, batch): # update errors in prioritized replay buffer importance_weights = None if isinstance(self.memory, PrioritizedExperienceReplay): self.call_memory('update_priorities', (batch.info('idx'), TD_errors)) importance_weights = batch.info('weight') return importance_weights def _validate_action(self, policy, action): if np.array(action).shape != (): raise ValueError(( 'The exploration_policy {} returned a vector of actions ' 'instead of a single action. ValueOptimizationAgents ' 'require exploration policies which return a single action.' ).format(policy.__class__.__name__)) def choose_action(self, curr_state): actions_q_values = self.get_all_q_values_for_states(curr_state) # choose action according to the exploration policy and the current phase (evaluating or training the agent) action = self.exploration_policy.get_action(actions_q_values) self._validate_action(self.exploration_policy, action) if actions_q_values is not None: # this is for bootstrapped dqn if type(actions_q_values) == list and len(actions_q_values) > 0: actions_q_values = self.exploration_policy.last_action_values actions_q_values = actions_q_values.squeeze() # store the q values statistics for logging self.q_values.add_sample(actions_q_values) for i, q_value in enumerate(actions_q_values): self.q_value_for_action[i].add_sample(q_value) action_info = ActionInfo(action=action, action_value=actions_q_values[action], max_action_value=np.max(actions_q_values)) else: action_info = ActionInfo(action=action) return action_info def learn_from_batch(self, batch): raise NotImplementedError("ValueOptimizationAgent is an abstract agent. Not to be used directly.")