import math from typing import List, Union import tensorflow as tf from rl_coach.utils import force_list def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name): layers = [input_layer] # batchnorm if batchnorm: layers.append( tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training) ) # activation if activation_function: layers.append( activation_function(layers[-1], name="{}_activation".format(name)) ) # dropout if dropout: layers.append( tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training) ) # remove the input layer from the layers list del layers[0] return layers class Conv2d(object): def __init__(self, num_filters: int, kernel_size: int, strides: int): self.num_filters = num_filters self.kernel_size = kernel_size self.strides = strides def __call__(self, input_layer, name: str=None, is_training=None): """ returns a tensorflow conv2d layer :param input_layer: previous layer :param name: layer name :return: conv2d layer """ return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size, strides=self.strides, data_format='channels_last', name=name) def __str__(self): return "Convolution (num filters = {}, kernel size = {}, stride = {})"\ .format(self.num_filters, self.kernel_size, self.strides) class BatchnormActivationDropout(object): def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0): self.batchnorm = batchnorm self.activation_function = activation_function self.dropout_rate = dropout_rate def __call__(self, input_layer, name: str=None, is_training=None): """ returns a list of tensorflow batchnorm, activation and dropout layers :param input_layer: previous layer :param name: layer name :return: batchnorm, activation and dropout layers """ return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm, activation_function=self.activation_function, dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate, is_training=is_training, name=name) def __str__(self): result = [] if self.batchnorm: result += ["Batch Normalization"] if self.activation_function: result += ["Activation (type = {})".format(self.activation_function.__name__)] if self.dropout_rate > 0: result += ["Dropout (rate = {})".format(self.dropout_rate)] return "\n".join(result) class Dense(object): def __init__(self, units: int): self.units = units def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None, is_training=None): """ returns a tensorflow dense layer :param input_layer: previous layer :param name: layer name :return: dense layer """ return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer, activation=activation) def __str__(self): return "Dense (num outputs = {})".format(self.units) class NoisyNetDense(object): """ A factorized Noisy Net layer https://arxiv.org/abs/1706.10295. """ def __init__(self, units: int): self.units = units self.sigma0 = 0.5 def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None): """ returns a NoisyNet dense layer :param input_layer: previous layer :param name: layer name :param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev. :param activation: the activation function :return: dense layer """ #TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every # forward (either act or train, both for online and target networks). # A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps) num_inputs = input_layer.get_shape()[-1].value num_outputs = self.units stddev = 1 / math.sqrt(num_inputs) activation = activation if activation is not None else (lambda x: x) if kernel_initializer is None: kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev) kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0) else: kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer with tf.variable_scope(None, default_name=name): weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs), initializer=kernel_mean_initializer) bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer()) weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs), initializer=kernel_stddev_initializer) bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,), initializer=kernel_stddev_initializer) bias_noise = self.f(tf.random_normal((num_outputs,))) weight_noise = self.factorized_noise(num_inputs, num_outputs) bias = bias_mean + bias_stddev * bias_noise weight = weight_mean + weight_stddev * weight_noise return activation(tf.matmul(input_layer, weight) + bias) def factorized_noise(self, inputs, outputs): # TODO: use factorized noise only for compute intensive algos (e.g. DQN). # lighter algos (e.g. DQN) should not use it noise1 = self.f(tf.random_normal((inputs, 1))) noise2 = self.f(tf.random_normal((1, outputs))) return tf.matmul(noise1, noise2) @staticmethod def f(values): return tf.sqrt(tf.abs(values)) * tf.sign(values) def __str__(self): return "Noisy Dense (num outputs = {})".format(self.units)