from typing import Union from types import ModuleType import mxnet as mx from mxnet import nd, sym from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.mxnet_components.embedders.embedder import InputEmbedder from rl_coach.architectures.mxnet_components.layers import Dense from rl_coach.base_parameters import EmbedderScheme nd_sym_type = Union[mx.nd.NDArray, mx.sym.Symbol] class VectorEmbedder(InputEmbedder): def __init__(self, params: InputEmbedderParameters): """ An vector embedder is an input embedder that takes an vector input from the state and produces a vector embedding by passing it through a neural network. :param params: parameters object containing input_clipping, input_rescaling, batchnorm, activation_function and dropout properties. """ super(VectorEmbedder, self).__init__(params) self.input_rescaling = params.input_rescaling['vector'] self.input_offset = params.input_offset['vector'] @property def schemes(self): """ Schemes are the pre-defined network architectures of various depths and complexities that can be used. Are used to create Block when VectorEmbedder is initialised. :return: dictionary of schemes, with key of type EmbedderScheme enum and value being list of mxnet.gluon.Block. """ return { EmbedderScheme.Empty: [], EmbedderScheme.Shallow: [ Dense(units=128) ], # Use for DQN EmbedderScheme.Medium: [ Dense(units=256) ], # Use for Carla EmbedderScheme.Deep: [ Dense(units=128), Dense(units=128), Dense(units=128) ] } def hybrid_forward(self, F: ModuleType, x: nd_sym_type, *args, **kwargs) -> nd_sym_type: """ Used for forward pass through embedder network. :param F: backend api, either `nd` or `sym` (if block has been hybridized). :type F: nd or sym :param x: vector representing environment state, of shape (batch_size, in_channels). :return: embedding of environment state, of shape (batch_size, channels). """ if isinstance(x, nd.NDArray) and len(x.shape) != 2 and self.scheme != EmbedderScheme.Empty: raise ValueError("Vector embedders expect the input size to have 2 dimensions. The given size is: {}" .format(x.shape)) return super(VectorEmbedder, self).hybrid_forward(F, x, *args, **kwargs)