""" this rollout worker restores a model from disk, evaluates a predefined number of episodes, and contributes them to a distributed memory """ import argparse from rl_coach.base_parameters import TaskParameters from rl_coach.coach import expand_preset from rl_coach.core_types import EnvironmentEpisodes, RunPhase from rl_coach.utils import short_dynamic_import # Q: specify alternative distributed memory, or should this go in the preset? # A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it. def rollout_worker(graph_manager, checkpoint_dir): """ restore a checkpoint then perform rollouts using the restored model """ task_parameters = TaskParameters() task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir graph_manager.create_graph(task_parameters) graph_manager.phase = RunPhase.TRAIN graph_manager.act(EnvironmentEpisodes(num_steps=10)) graph_manager.phase = RunPhase.UNDEFINED def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run (class name from the 'presets' directory.)", type=str, required=True) parser.add_argument('--checkpoint_dir', help='(string) Path to a folder containing a checkpoint to restore the model from.', type=str, default='/checkpoint') args = parser.parse_args() graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True) rollout_worker( graph_manager=graph_manager, checkpoint_dir=args.checkpoint_dir, ) if __name__ == '__main__': main()