# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import tensorflow as tf from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware, MiddlewareParameters from rl_coach.base_parameters import MiddlewareScheme from rl_coach.core_types import Middleware_LSTM_Embedding class LSTMMiddlewareParameters(MiddlewareParameters): def __init__(self, activation_function='relu', number_of_lstm_cells=256, scheme: MiddlewareScheme = MiddlewareScheme.Medium, batchnorm: bool = False, dropout: bool = False, name="middleware_lstm_embedder"): super().__init__(parameterized_class=LSTMMiddleware, activation_function=activation_function, scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name) self.number_of_lstm_cells = number_of_lstm_cells class LSTMMiddleware(Middleware): schemes = { MiddlewareScheme.Empty: [], # ppo MiddlewareScheme.Shallow: [ [64] ], # dqn MiddlewareScheme.Medium: [ [512] ], MiddlewareScheme.Deep: \ [ [128], [128], [128] ] } def __init__(self, activation_function=tf.nn.relu, number_of_lstm_cells: int=256, scheme: MiddlewareScheme = MiddlewareScheme.Medium, batchnorm: bool = False, dropout: bool = False, name="middleware_lstm_embedder"): super().__init__(activation_function=activation_function, batchnorm=batchnorm, dropout=dropout, scheme=scheme, name=name) self.return_type = Middleware_LSTM_Embedding self.number_of_lstm_cells = number_of_lstm_cells self.layers = [] def _build_module(self): """ self.state_in: tuple of placeholders containing the initial state self.state_out: tuple of output state todo: it appears that the shape of the output is batch, feature the code here seems to be slicing off the first element in the batch which would definitely be wrong. need to double check the shape """ self.layers.append(self.input) # optionally insert some dense layers before the LSTM if isinstance(self.scheme, MiddlewareScheme): layers_params = LSTMMiddleware.schemes[self.scheme] else: layers_params = self.scheme for idx, layer_params in enumerate(layers_params): self.layers.append( tf.layers.dense(self.layers[-1], layer_params[0], name='fc{}'.format(idx)) ) self.layers.extend(batchnorm_activation_dropout(self.layers[-1], self.batchnorm, self.activation_function, self.dropout, self.dropout_rate, idx)) # add the LSTM layer lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.number_of_lstm_cells, state_is_tuple=True) self.c_init = np.zeros((1, lstm_cell.state_size.c), np.float32) self.h_init = np.zeros((1, lstm_cell.state_size.h), np.float32) self.state_init = [self.c_init, self.h_init] self.c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c]) self.h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h]) self.state_in = (self.c_in, self.h_in) rnn_in = tf.expand_dims(self.layers[-1], [0]) step_size = tf.shape(self.layers[-1])[:1] state_in = tf.nn.rnn_cell.LSTMStateTuple(self.c_in, self.h_in) lstm_outputs, lstm_state = tf.nn.dynamic_rnn( lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state self.state_out = (lstm_c[:1, :], lstm_h[:1, :]) self.output = tf.reshape(lstm_outputs, [-1, self.number_of_lstm_cells])