# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import gym import numpy as np from gym import spaces class BitFlip(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30 } def __init__(self, bit_length=16, max_steps=None, mean_zero=False): super(BitFlip, self).__init__() if bit_length < 1: raise ValueError('bit_length must be >= 1, found {}'.format(bit_length)) self.bit_length = bit_length self.mean_zero = mean_zero if max_steps is None: # default to bit_length self.max_steps = bit_length elif max_steps == 0: self.max_steps = None else: self.max_steps = max_steps # spaces documentation: https://gym.openai.com/docs/ self.action_space = spaces.Discrete(bit_length) self.observation_space = spaces.Dict({ 'state': spaces.Box(low=0, high=1, shape=(bit_length, )), 'desired_goal': spaces.Box(low=0, high=1, shape=(bit_length, )), 'achieved_goal': spaces.Box(low=0, high=1, shape=(bit_length, )) }) self.reset() def _terminate(self): return (self.state == self.goal).all() or self.steps >= self.max_steps def _reward(self): return -1 if (self.state != self.goal).any() else 0 def step(self, action): # action is an int in the range [0, self.bit_length) self.state[action] = int(not self.state[action]) self.steps += 1 return (self._get_obs(), self._reward(), self._terminate(), {}) def reset(self): self.steps = 0 self.state = np.array([random.choice([1, 0]) for _ in range(self.bit_length)]) # make sure goal is not the initial state self.goal = self.state while (self.goal == self.state).all(): self.goal = np.array([random.choice([1, 0]) for _ in range(self.bit_length)]) return self._get_obs() def _mean_zero(self, x): if self.mean_zero: return (x - 0.5) / 0.5 else: return x def _get_obs(self): return { 'state': self._mean_zero(self.state), 'desired_goal': self._mean_zero(self.goal), 'achieved_goal': self._mean_zero(self.state) } def render(self, mode='human', close=False): observation = np.zeros((20, 20 * self.bit_length, 3)) for bit_idx, (state_bit, goal_bit) in enumerate(zip(self.state, self.goal)): # green if the bit matches observation[:, bit_idx * 20:(bit_idx + 1) * 20, 1] = (state_bit == goal_bit) * 255 # red if the bit doesn't match observation[:, bit_idx * 20:(bit_idx + 1) * 20, 0] = (state_bit != goal_bit) * 255 return observation