# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List import numpy as np from rl_coach.core_types import RunPhase, ActionType from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.exploration_policies.exploration_policy import ExplorationParameters from rl_coach.exploration_policies.exploration_policy import ExplorationPolicy from rl_coach.schedules import Schedule, LinearSchedule from rl_coach.spaces import ActionSpace, DiscreteActionSpace, BoxActionSpace from rl_coach.utils import dynamic_import_and_instantiate_module_from_params class EGreedyParameters(ExplorationParameters): def __init__(self): super().__init__() self.epsilon_schedule = LinearSchedule(0.5, 0.01, 50000) self.evaluation_epsilon = 0.05 self.continuous_exploration_policy_parameters = AdditiveNoiseParameters() self.continuous_exploration_policy_parameters.noise_percentage_schedule = LinearSchedule(0.1, 0.1, 50000) # for continuous control - # (see http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/2017-TOG-deepLoco.pdf) @property def path(self): return 'rl_coach.exploration_policies.e_greedy:EGreedy' class EGreedy(ExplorationPolicy): def __init__(self, action_space: ActionSpace, epsilon_schedule: Schedule, evaluation_epsilon: float, continuous_exploration_policy_parameters: ExplorationParameters=AdditiveNoiseParameters()): """ :param action_space: the action space used by the environment :param epsilon_schedule: a schedule for the epsilon values :param evaluation_epsilon: the epsilon value to use for evaluation phases :param continuous_exploration_policy_parameters: the parameters of the continuous exploration policy to use if the e-greedy is used for a continuous policy """ super().__init__(action_space) self.epsilon_schedule = epsilon_schedule self.evaluation_epsilon = evaluation_epsilon if isinstance(self.action_space, BoxActionSpace): # for continuous e-greedy (see http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/2017-TOG-deepLoco.pdf) continuous_exploration_policy_parameters.action_space = action_space self.continuous_exploration_policy = \ dynamic_import_and_instantiate_module_from_params(continuous_exploration_policy_parameters) self.current_random_value = np.random.rand() def requires_action_values(self): epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value return self.current_random_value >= epsilon def get_action(self, action_values: List[ActionType]) -> ActionType: epsilon = self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value if isinstance(self.action_space, DiscreteActionSpace): top_action = np.argmax(action_values) if self.current_random_value < epsilon: chosen_action = self.action_space.sample() else: chosen_action = top_action else: if self.current_random_value < epsilon and self.phase == RunPhase.TRAIN: chosen_action = self.action_space.sample() else: chosen_action = self.continuous_exploration_policy.get_action(action_values) # step the epsilon schedule and generate a new random value for next time if self.phase == RunPhase.TRAIN: self.epsilon_schedule.step() self.current_random_value = np.random.rand() return chosen_action def get_control_param(self): if isinstance(self.action_space, DiscreteActionSpace): return self.evaluation_epsilon if self.phase == RunPhase.TEST else self.epsilon_schedule.current_value elif isinstance(self.action_space, BoxActionSpace): return self.continuous_exploration_policy.get_control_param() def change_phase(self, phase): super().change_phase(phase) if isinstance(self.action_space, BoxActionSpace): self.continuous_exploration_policy.change_phase(phase)