# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List, Dict import numpy as np from rl_coach.agents.dqn_agent import DQNAgentParameters from rl_coach.architectures.tensorflow_components.architecture import NoisyNetDense from rl_coach.base_parameters import AgentParameters, NetworkParameters from rl_coach.spaces import ActionSpace, BoxActionSpace, DiscreteActionSpace from rl_coach.core_types import ActionType from rl_coach.exploration_policies.exploration_policy import ExplorationPolicy, ExplorationParameters class ParameterNoiseParameters(ExplorationParameters): def __init__(self, agent_params: AgentParameters): super().__init__() if not isinstance(agent_params, DQNAgentParameters): raise ValueError("Currently only DQN variants are supported for using an exploration type of " "ParameterNoise.") self.network_params = agent_params.network_wrappers @property def path(self): return 'rl_coach.exploration_policies.parameter_noise:ParameterNoise' class ParameterNoise(ExplorationPolicy): def __init__(self, network_params: Dict[str, NetworkParameters], action_space: ActionSpace): """ :param action_space: the action space used by the environment :param alpha0: """ super().__init__(action_space) self.network_params = network_params self._replace_network_dense_layers() def get_action(self, action_values: List[ActionType]) -> ActionType: if type(self.action_space) == DiscreteActionSpace: return np.argmax(action_values) elif type(self.action_space) == BoxActionSpace: action_values_mean = action_values[0].squeeze() action_values_std = action_values[1].squeeze() return np.random.normal(action_values_mean, action_values_std) else: raise ValueError("ActionSpace type {} is not supported for ParameterNoise.".format(type(self.action_space))) def get_control_param(self): return 0 def _replace_network_dense_layers(self): # replace the dense type for all the networks components (embedders, mw, heads) with a NoisyNetDense # NOTE: we are changing network params in a non-params class (an already instantiated class), this could have # been prone to a bug, but since the networks are created very late in the game # (after agent.init_environment_dependent()_modules is called) - then we are fine. for network_wrapper_params in self.network_params.values(): for component_params in list(network_wrapper_params.input_embedders_parameters.values()) + \ [network_wrapper_params.middleware_parameters] + \ network_wrapper_params.heads_parameters: component_params.dense_layer = NoisyNetDense