""" """ import argparse import time import json from threading import Thread from rl_coach.base_parameters import TaskParameters from rl_coach.coach import expand_preset from rl_coach import core_types from rl_coach.utils import short_dynamic_import from rl_coach.memories.backend.memory_impl import construct_memory_params from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params def data_store_ckpt_save(data_store): while True: data_store.save_to_store() time.sleep(10) def training_worker(graph_manager, checkpoint_dir, policy_type): """ restore a checkpoint then perform rollouts using the restored model """ # initialize graph task_parameters = TaskParameters() task_parameters.__dict__['save_checkpoint_dir'] = checkpoint_dir task_parameters.__dict__['save_checkpoint_secs'] = 20 graph_manager.create_graph(task_parameters) # save randomly initialized graph graph_manager.save_checkpoint() # training loop steps = 0 # evaluation offset eval_offset = 1 while(steps < graph_manager.improve_steps.num_steps): if graph_manager.should_train(): steps += 1 graph_manager.phase = core_types.RunPhase.TRAIN graph_manager.train() graph_manager.phase = core_types.RunPhase.UNDEFINED if steps * graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps > graph_manager.steps_between_evaluation_periods.num_steps * eval_offset: graph_manager.evaluate(graph_manager.evaluation_steps) eval_offset += 1 if policy_type == 'ON': graph_manager.save_checkpoint() else: graph_manager.occasionally_save_checkpoint() def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run (class name from the 'presets' directory.)", type=str, required=True) parser.add_argument('--checkpoint-dir', help='(string) Path to a folder containing a checkpoint to write the model to.', type=str, default='/checkpoint') parser.add_argument('--memory-backend-params', help="(string) JSON string of the memory backend params", type=str) parser.add_argument('--data-store-params', help="(string) JSON string of the data store params", type=str) parser.add_argument('--policy-type', help="(string) The type of policy: OFF/ON", type=str, default='OFF') args = parser.parse_args() graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True) if args.memory_backend_params: args.memory_backend_params = json.loads(args.memory_backend_params) args.memory_backend_params['run_type'] = 'trainer' graph_manager.agent_params.memory.register_var('memory_backend_params', construct_memory_params(args.memory_backend_params)) if args.data_store_params: data_store_params = construct_data_store_params(json.loads(args.data_store_params)) data_store_params.checkpoint_dir = args.checkpoint_dir graph_manager.data_store_params = data_store_params # data_store = get_data_store(data_store_params) # thread = Thread(target = data_store_ckpt_save, args = [data_store]) # thread.start() training_worker( graph_manager=graph_manager, checkpoint_dir=args.checkpoint_dir, policy_type=args.policy_type ) if __name__ == '__main__': main()