# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.schedules import LinearSchedule from rl_coach.agents.dqn_agent import DQNAgentParameters from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent from rl_coach.core_types import EnvironmentSteps class DDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(30000) self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.exploration.evaluation_epsilon = 0.001 @property def path(self): return 'rl_coach.agents.ddqn_agent:DDQNAgent' # Double DQN - https://arxiv.org/abs/1509.06461 class DDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1) q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # initialize with the current prediction so that we will # only update the action that we have actually done in this transition TD_errors = [] for i in range(self.ap.network_wrappers['main'].batch_size): new_target = batch.rewards()[i] + \ (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * q_st_plus_1[i][selected_actions[i]] TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]])) TD_targets[i, batch.actions()[i]] = new_target # update errors in prioritized replay buffer importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch) result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets, importance_weights=importance_weights) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads