import math from types import FunctionType from typing import Any import tensorflow as tf from rl_coach.architectures import layers from rl_coach.architectures.tensorflow_components import utils def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name): layers = [input_layer] # batchnorm if batchnorm: layers.append( tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training) ) # activation if activation_function: if isinstance(activation_function, str): activation_function = utils.get_activation_function(activation_function) layers.append( activation_function(layers[-1], name="{}_activation".format(name)) ) # dropout if dropout: layers.append( tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training) ) # remove the input layer from the layers list del layers[0] return layers # define global dictionary for storing layer type to layer implementation mapping tf_layer_dict = dict() def reg_to_tf(layer_type) -> FunctionType: """ function decorator that registers layer implementation :return: decorated function """ def reg_impl_decorator(func): assert layer_type not in tf_layer_dict tf_layer_dict[layer_type] = func return func return reg_impl_decorator def convert_layer(layer): """ If layer is callable, return layer, otherwise convert to TF type :param layer: layer to be converted :return: converted layer if not callable, otherwise layer itself """ if callable(layer): return layer return tf_layer_dict[type(layer)](layer) class Conv2d(layers.Conv2d): def __init__(self, num_filters: int, kernel_size: int, strides: int): super(Conv2d, self).__init__(num_filters=num_filters, kernel_size=kernel_size, strides=strides) def __call__(self, input_layer, name: str=None, is_training=None): """ returns a tensorflow conv2d layer :param input_layer: previous layer :param name: layer name :return: conv2d layer """ return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size, strides=self.strides, data_format='channels_last', name=name) @staticmethod @reg_to_tf(layers.Conv2d) def to_tf(base: layers.Conv2d): return Conv2d( num_filters=base.num_filters, kernel_size=base.kernel_size, strides=base.strides) class BatchnormActivationDropout(layers.BatchnormActivationDropout): def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0): super(BatchnormActivationDropout, self).__init__( batchnorm=batchnorm, activation_function=activation_function, dropout_rate=dropout_rate) def __call__(self, input_layer, name: str=None, is_training=None): """ returns a list of tensorflow batchnorm, activation and dropout layers :param input_layer: previous layer :param name: layer name :return: batchnorm, activation and dropout layers """ return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm, activation_function=self.activation_function, dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate, is_training=is_training, name=name) @staticmethod @reg_to_tf(layers.BatchnormActivationDropout) def to_tf(base: layers.BatchnormActivationDropout): return BatchnormActivationDropout( batchnorm=base.batchnorm, activation_function=base.activation_function, dropout_rate=base.dropout_rate) class Dense(layers.Dense): def __init__(self, units: int): super(Dense, self).__init__(units=units) def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None, is_training=None): """ returns a tensorflow dense layer :param input_layer: previous layer :param name: layer name :return: dense layer """ return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer, activation=activation) @staticmethod @reg_to_tf(layers.Dense) def to_tf(base: layers.Dense): return Dense(units=base.units) class NoisyNetDense(layers.NoisyNetDense): """ A factorized Noisy Net layer https://arxiv.org/abs/1706.10295. """ def __init__(self, units: int): super(NoisyNetDense, self).__init__(units=units) def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None): """ returns a NoisyNet dense layer :param input_layer: previous layer :param name: layer name :param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev. :param activation: the activation function :return: dense layer """ #TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every # forward (either act or train, both for online and target networks). # A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps) def _f(values): return tf.sqrt(tf.abs(values)) * tf.sign(values) def _factorized_noise(inputs, outputs): # TODO: use factorized noise only for compute intensive algos (e.g. DQN). # lighter algos (e.g. DQN) should not use it noise1 = _f(tf.random_normal((inputs, 1))) noise2 = _f(tf.random_normal((1, outputs))) return tf.matmul(noise1, noise2) num_inputs = input_layer.get_shape()[-1].value num_outputs = self.units stddev = 1 / math.sqrt(num_inputs) activation = activation if activation is not None else (lambda x: x) if kernel_initializer is None: kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev) kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0) else: kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer with tf.variable_scope(None, default_name=name): weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs), initializer=kernel_mean_initializer) bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer()) weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs), initializer=kernel_stddev_initializer) bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,), initializer=kernel_stddev_initializer) bias_noise = _f(tf.random_normal((num_outputs,))) weight_noise = _factorized_noise(num_inputs, num_outputs) bias = bias_mean + bias_stddev * bias_noise weight = weight_mean + weight_stddev * weight_noise return activation(tf.matmul(input_layer, weight) + bias) @staticmethod @reg_to_tf(layers.NoisyNetDense) def to_tf(base: layers.NoisyNetDense): return NoisyNetDense(units=base.units)