# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from memories.memory import * import threading from typing import Union class EpisodicExperienceReplay(Memory): def __init__(self, tuning_parameters): """ :param tuning_parameters: A Preset class instance with all the running paramaters :type tuning_parameters: Preset """ Memory.__init__(self, tuning_parameters) self.tp = tuning_parameters self.max_size_in_episodes = tuning_parameters.agent.num_episodes_in_experience_replay self.max_size_in_transitions = tuning_parameters.agent.num_transitions_in_experience_replay self.discount = tuning_parameters.agent.discount self.buffer = [Episode()] # list of episodes self.transitions = [] self._length = 1 self._num_transitions = 0 self._num_transitions_in_complete_episodes = 0 self.return_is_bootstrapped = tuning_parameters.agent.bootstrap_total_return_from_old_policy def length(self): """ Get the number of episodes in the ER (even if they are not complete) """ if self._length is not 0 and self.buffer[-1].is_empty(): return self._length - 1 return self._length def num_complete_episodes(self): """ Get the number of complete episodes in ER """ return self._length - 1 def num_transitions(self): return self._num_transitions def num_transitions_in_complete_episodes(self): return self._num_transitions_in_complete_episodes def sample_episode(self): episode_idx = np.random.randint(self.num_complete_episodes()) return self.buffer[episode_idx] def sample_n_episodes(self, n): num_n_episodes = (self.num_complete_episodes()) / n assert num_n_episodes > 0, \ 'Tried sampling {} episodes when only {} completed episodes are available in the memory' \ .format(n, self.num_complete_episodes()) start_episode_idx = np.random.randint(num_n_episodes) * n return self.buffer[start_episode_idx:(start_episode_idx + n)] def sample_last_n_episodes(self, n): num_n_episodes = (self.num_complete_episodes()) / n assert num_n_episodes > 0, \ 'Tried sampling {} episodes when only {} completed episodes are available in the memory' \ .format(n, self.num_complete_episodes()) start_episode_idx = -n return self.buffer[start_episode_idx:(start_episode_idx + n)] def sample(self, size): assert self.num_transitions_in_complete_episodes() > size, \ 'There are not enough transitions in the replay buffer. ' \ 'Available transitions: {}. Requested transitions: {}.'\ .format(self.num_transitions_in_complete_episodes(), size) batch = [] transitions_idx = np.random.randint(self.num_transitions_in_complete_episodes(), size=size) for i in transitions_idx: batch.append(self.transitions[i]) return batch def enforce_length(self): # clean up if necessary if self.max_size_in_transitions is not None: while self.max_size_in_transitions != 0 and self.num_transitions() > self.max_size_in_transitions: self.remove_episode(0) else: while self.length() > self.max_size_in_episodes: self.remove_episode(0) def store(self, transition): if len(self.buffer) == 0: self.buffer.append(Episode()) last_episode = self.buffer[-1] last_episode.insert(transition) self.transitions.append(transition) self._num_transitions += 1 if transition.game_over: self._num_transitions_in_complete_episodes += last_episode.length() self._length += 1 self.buffer[-1].update_returns(self.discount, is_bootstrapped=self.tp.agent.bootstrap_total_return_from_old_policy, n_step_return=self.tp.agent.n_step) self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead) # self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization self.buffer.append(Episode()) self.enforce_length() def insert_full_episode(self, episode): # Do not add a new episode if the last one is not closed yet if self.buffer[-1].get_last_transition().done != True: return False episode.update_returns(self.discount) episode.update_measurements_targets(self.tp.agent.num_predicted_steps_ahead) self.buffer.append(episode) self.transitions += episode.transitions self._length += 1 self._num_transitions += episode.length() self.enforce_length() return True def get_episode(self, episode_index): if self.length() == 0: return None episode = self.buffer[episode_index] return episode def remove_episode(self, episode_index): if len(self.buffer) > episode_index: episode_length = self.buffer[episode_index].length() self._length -= 1 self._num_transitions -= episode_length self._num_transitions_in_complete_episodes -= episode_length del self.transitions[:episode_length] del self.buffer[episode_index] # for API compatibility def get(self, index): return self.get_episode(index) def get_last_complete_episode(self) -> Union[None, Episode]: """ Returns the last complete episode in the memory or None if there are no complete episodes :return: None or the last complete episode """ last_complete_episode_index = self.num_complete_episodes()-1 if last_complete_episode_index >= 0: return self.get(last_complete_episode_index) else: return None def update_last_transition_info(self, info): episode = self.buffer[-1] if episode.length() == 0: if len(self.buffer) < 2: return episode = self.buffer[-2] for key, val in info.items(): episode.transitions[-1].info[key] = val def clean(self): self.transitions = [] self.buffer = [Episode()] self._length = 1 self._num_transitions = 0 self._num_transitions_in_complete_episodes = 0