# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNNetworkParameters, DQNAlgorithmParameters from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent from rl_coach.architectures.head_parameters import QuantileRegressionQHeadParameters from rl_coach.core_types import StateType from rl_coach.schedules import LinearSchedule class QuantileRegressionDQNNetworkParameters(DQNNetworkParameters): def __init__(self): super().__init__() self.heads_parameters = [QuantileRegressionQHeadParameters()] self.learning_rate = 0.00005 self.optimizer_epsilon = 0.01 / 32 class QuantileRegressionDQNAlgorithmParameters(DQNAlgorithmParameters): def __init__(self): super().__init__() self.atoms = 200 self.huber_loss_interval = 1 # called k in the paper class QuantileRegressionDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm = QuantileRegressionDQNAlgorithmParameters() self.network_wrappers = {"main": QuantileRegressionDQNNetworkParameters()} self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.exploration.evaluation_epsilon = 0.001 @property def path(self): return 'rl_coach.agents.qr_dqn_agent:QuantileRegressionDQNAgent' # Quantile Regression Deep Q Network - https://arxiv.org/pdf/1710.10044v1.pdf class QuantileRegressionDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.quantile_probabilities = np.ones(self.ap.algorithm.atoms) / float(self.ap.algorithm.atoms) def get_q_values(self, quantile_values): return np.dot(quantile_values, self.quantile_probabilities) # prediction's format is (batch,actions,atoms) def get_all_q_values_for_states(self, states: StateType): if self.exploration_policy.requires_action_values(): quantile_values = self.get_prediction(states) actions_q_values = self.get_q_values(quantile_values) else: actions_q_values = None return actions_q_values def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # get the quantiles of the next states and current states next_state_quantiles, current_quantiles = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # get the optimal actions to take for the next states target_actions = np.argmax(self.get_q_values(next_state_quantiles), axis=1) # calculate the Bellman update batch_idx = list(range(self.ap.network_wrappers['main'].batch_size)) TD_targets = batch.rewards(True) + (1.0 - batch.game_overs(True)) * self.ap.algorithm.discount \ * next_state_quantiles[batch_idx, target_actions] # get the locations of the selected actions within the batch for indexing purposes actions_locations = [[b, a] for b, a in zip(batch_idx, batch.actions())] # calculate the cumulative quantile probabilities and reorder them to fit the sorted quantiles order cumulative_probabilities = np.array(range(self.ap.algorithm.atoms + 1)) / float(self.ap.algorithm.atoms) # tau_i quantile_midpoints = 0.5*(cumulative_probabilities[1:] + cumulative_probabilities[:-1]) # tau^hat_i quantile_midpoints = np.tile(quantile_midpoints, (self.ap.network_wrappers['main'].batch_size, 1)) sorted_quantiles = np.argsort(current_quantiles[batch_idx, batch.actions()]) for idx in range(self.ap.network_wrappers['main'].batch_size): quantile_midpoints[idx, :] = quantile_midpoints[idx, sorted_quantiles[idx]] # train result = self.networks['main'].train_and_sync_networks({ **batch.states(network_keys), 'output_0_0': actions_locations, 'output_0_1': quantile_midpoints, }, TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads