import math from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.architectures.head_parameters import DuelingQHeadParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = DDQNAgentParameters() # DDQN params agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100) agent_params.algorithm.discount = 0.99 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) # NN configuration agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False agent_params.network_wrappers['main'].heads_parameters = \ [DuelingQHeadParameters(rescale_gradient_from_head_by_factor=1/math.sqrt(2))] # ER size agent_params.memory.max_size = (MemoryGranularity.Transitions, 40000) # E-Greedy schedule agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000) ################ # Environment # ################ env_params = GymVectorEnvironment(level='CartPole-v0') ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 150 preset_validation_params.max_episodes_to_achieve_reward = 250 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)