from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.architectures.head_parameters import DuelingQHeadParameters from rl_coach.base_parameters import VisualizationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.doom_environment import DoomEnvironmentParameters from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50) schedule_params.evaluation_steps = EnvironmentEpisodes(3) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = DDQNAgentParameters() agent_params.memory.max_size = (MemoryGranularity.Transitions, 5000) agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1000) agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0.01, 50000) agent_params.exploration.evaluation_epsilon = 0 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()] ############### # Environment # ############### env_params = DoomEnvironmentParameters(level='basic') graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters())