from rl_coach.agents.actor_critic_agent import ActorCriticAgentParameters from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.middleware_parameters import LSTMMiddlewareParameters from rl_coach.architectures.tensorflow_components.layers import Dense from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = ActorCriticAgentParameters() agent_params.algorithm.apply_gradients_every_x_episodes = 1 agent_params.algorithm.num_steps_between_gradient_updates = 20 agent_params.algorithm.beta_entropy = 0.005 agent_params.network_wrappers['main'].learning_rate = 0.00002 agent_params.network_wrappers['main'].input_embedders_parameters['observation'] = \ InputEmbedderParameters(scheme=[Dense(200)]) agent_params.network_wrappers['main'].middleware_parameters = LSTMMiddlewareParameters(scheme=MiddlewareScheme.Empty, number_of_lstm_cells=128) agent_params.input_filter = InputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/20.)) agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter()) ############### # Environment # ############### env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 1000 preset_validation_params.num_workers = 8 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)