# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from agents.policy_optimization_agent import * from logger import * from utils import * import scipy.signal # Actor Critic - https://arxiv.org/abs/1602.01783 class ActorCriticAgent(PolicyOptimizationAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network = False): PolicyOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network) self.last_gradient_update_step_idx = 0 self.action_advantages = Signal('Advantages') self.state_values = Signal('Values') self.unclipped_grads = Signal('Grads (unclipped)') self.signals.append(self.action_advantages) self.signals.append(self.state_values) self.signals.append(self.unclipped_grads) # Discounting function used to calculate discounted returns. def discount(self, x, gamma): return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1] def get_general_advantage_estimation_values(self, rewards, values): # values contain n+1 elements (t ... t+n+1), rewards contain n elements (t ... t + n) bootstrap_extended_rewards = np.array(rewards.tolist() + [values[-1]]) # Approximation based calculation of GAE (mathematically correct only when Tmax = inf, # although in practice works even in much smaller Tmax values, e.g. 20) deltas = rewards + self.tp.agent.discount * values[1:] - values[:-1] gae = self.discount(deltas, self.tp.agent.discount * self.tp.agent.gae_lambda) if self.tp.agent.estimate_value_using_gae: discounted_returns = np.expand_dims(gae + values[:-1], -1) else: discounted_returns = np.expand_dims(np.array(self.discount(bootstrap_extended_rewards, self.tp.agent.discount)), 1)[:-1] return gae, discounted_returns def learn_from_batch(self, batch): # batch contains a list of episodes to learn from current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch) # get the values for the current states result = self.main_network.online_network.predict(current_states) current_state_values = result[0] self.state_values.add_sample(current_state_values) # the targets for the state value estimator num_transitions = len(game_overs) state_value_head_targets = np.zeros((num_transitions, 1)) # estimate the advantage function action_advantages = np.zeros((num_transitions, 1)) if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE: if game_overs[-1]: R = 0 else: R = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0] for i in reversed(range(num_transitions)): R = rewards[i] + self.tp.agent.discount * R state_value_head_targets[i] = R action_advantages[i] = R - current_state_values[i] elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE: # get bootstraps bootstrapped_value = self.main_network.online_network.predict(np.expand_dims(next_states[-1], 0))[0] values = np.append(current_state_values, bootstrapped_value) if game_overs[-1]: values[-1] = 0 # get general discounted returns table gae_values, state_value_head_targets = self.get_general_advantage_estimation_values(rewards, values) action_advantages = np.vstack(gae_values) else: screen.warning("WARNING: The requested policy gradient rescaler is not available") action_advantages = action_advantages.squeeze(axis=-1) if not self.env.discrete_controls and len(actions.shape) < 2: actions = np.expand_dims(actions, -1) # train result = self.main_network.online_network.accumulate_gradients([current_states, actions], [state_value_head_targets, action_advantages]) # logging total_loss, losses, unclipped_grads = result[:3] self.action_advantages.add_sample(action_advantages) self.unclipped_grads.add_sample(unclipped_grads) logger.create_signal_value('Value Loss', losses[0]) logger.create_signal_value('Policy Loss', losses[1]) return total_loss def choose_action(self, curr_state, phase=RunPhase.TRAIN): # convert to batch so we can run it through the network observation = np.expand_dims(np.array(curr_state['observation']), 0) if self.env.discrete_controls: # DISCRETE state_value, action_probabilities = self.main_network.online_network.predict(observation) action_probabilities = action_probabilities.squeeze() if phase == RunPhase.TRAIN: action = self.exploration_policy.get_action(action_probabilities) else: action = np.argmax(action_probabilities) action_info = {"action_probability": action_probabilities[action], "state_value": state_value} self.entropy.add_sample(-np.sum(action_probabilities * np.log(action_probabilities + eps))) else: # CONTINUOUS state_value, action_values_mean, action_values_std = self.main_network.online_network.predict(observation) action_values_mean = action_values_mean.squeeze() action_values_std = action_values_std.squeeze() if phase == RunPhase.TRAIN: action = np.squeeze(np.random.randn(1, self.action_space_size) * action_values_std + action_values_mean) else: action = action_values_mean action_info = {"action_probability": action, "state_value": state_value} return action, action_info