# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Tuple, List from rl_coach.base_parameters import AgentParameters, VisualizationParameters, TaskParameters, \ PresetValidationParameters from rl_coach.environments.environment import EnvironmentParameters, Environment from rl_coach.filters.filter import NoInputFilter, NoOutputFilter from rl_coach.graph_managers.graph_manager import GraphManager, ScheduleParameters from rl_coach.level_manager import LevelManager from rl_coach.utils import short_dynamic_import class BasicRLGraphManager(GraphManager): """ A basic RL graph manager creates the common scheme of RL where there is a single agent which interacts with a single environment. """ def __init__(self, agent_params: AgentParameters, env_params: EnvironmentParameters, schedule_params: ScheduleParameters, vis_params: VisualizationParameters=VisualizationParameters(), preset_validation_params: PresetValidationParameters = PresetValidationParameters(), name='simple_rl_graph'): super().__init__(name, schedule_params, vis_params) self.agent_params = agent_params self.env_params = env_params self.preset_validation_params = preset_validation_params self.agent_params.visualization = vis_params if self.agent_params.input_filter is None: if env_params is not None: self.agent_params.input_filter = env_params.default_input_filter() else: # In cases where there is no environment (e.g. batch-rl and imitation learning), there is nowhere to get # a default filter from. So using a default no-filter. # When there is no environment, the user is expected to define input/output filters (if required) using # the preset. self.agent_params.input_filter = NoInputFilter() if self.agent_params.output_filter is None: if env_params is not None: self.agent_params.output_filter = env_params.default_output_filter() else: self.agent_params.output_filter = NoOutputFilter() def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]: # environment loading self.env_params.seed = task_parameters.seed self.env_params.experiment_path = task_parameters.experiment_path env = short_dynamic_import(self.env_params.path)(**self.env_params.__dict__, visualization_parameters=self.visualization_parameters) # agent loading self.agent_params.task_parameters = task_parameters # TODO: this should probably be passed in a different way self.agent_params.name = "agent" agent = short_dynamic_import(self.agent_params.path)(self.agent_params) # set level manager level_manager = LevelManager(agents=agent, environment=env, name="main_level") return [level_manager], [env] def log_signal(self, signal_name, value): self.level_managers[0].agents['agent'].agent_logger.create_signal_value(signal_name, value) def get_signal_value(self, signal_name): return self.level_managers[0].agents['agent'].agent_logger.get_signal_value(signal_name) def get_agent(self): return self.level_managers[0].agents['agent']