# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from agents.value_optimization_agent import ValueOptimizationAgent from logger import screen from utils import RunPhase # Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf class NECAgent(ValueOptimizationAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=False) self.current_episode_state_embeddings = [] self.training_started = False def learn_from_batch(self, batch): if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn): return 0 else: if not self.training_started: self.training_started = True screen.log_title("Finished collecting initial entries in DND. Starting to train network...") current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch) TD_targets = self.main_network.online_network.predict(current_states) # only update the action that we have actually done in this transition for i in range(self.tp.batch_size): TD_targets[i, actions[i]] = total_return[i] # train the neural network result = self.main_network.train_and_sync_networks(current_states, TD_targets) total_loss = result[0] return total_loss def act(self, phase=RunPhase.TRAIN): if self.in_heatup: # get embedding in heatup (otherwise we get it through choose_action) embedding = self.main_network.online_network.predict( self.tf_input_state(self.curr_state), outputs=self.main_network.online_network.state_embedding) self.current_episode_state_embeddings.append(embedding) return super().act(phase) def get_prediction(self, curr_state): # get the actions q values and the state embedding embedding, actions_q_values = self.main_network.online_network.predict( self.tf_input_state(curr_state), outputs=[self.main_network.online_network.state_embedding, self.main_network.online_network.output_heads[0].output] ) # store the state embedding for inserting it to the DND later self.current_episode_state_embeddings.append(embedding.squeeze()) actions_q_values = actions_q_values[0][0] return actions_q_values def reset_game(self, do_not_reset_env=False): super().reset_game(do_not_reset_env) # get the last full episode that we have collected episode = self.memory.get_last_complete_episode() if episode is not None: # the indexing is only necessary because the heatup can end in the middle of an episode # this won't be required after fixing this so that when the heatup is ended, the episode is closed returns = episode.get_transitions_attribute('total_return')[:len(self.current_episode_state_embeddings)] actions = episode.get_transitions_attribute('action')[:len(self.current_episode_state_embeddings)] self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings, actions, returns) self.current_episode_state_embeddings = [] def save_model(self, model_id): self.main_network.save_model(model_id) with open(os.path.join(self.tp.save_model_dir, str(model_id) + '.dnd'), 'wb') as f: pickle.dump(self.main_network.online_network.output_heads[0].DND, f, pickle.HIGHEST_PROTOCOL)