# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import tensorflow as tf from rl_coach.architectures.tensorflow_components.layers import Dense from rl_coach.architectures.tensorflow_components.heads.head import Head from rl_coach.base_parameters import AgentParameters from rl_coach.spaces import SpacesDefinition, BoxActionSpace, DiscreteActionSpace class ClassificationHead(Head): def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str, head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu', dense_layer=Dense): super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function, dense_layer=dense_layer) self.name = 'classification_head' if isinstance(self.spaces.action, BoxActionSpace): self.num_actions = 1 elif isinstance(self.spaces.action, DiscreteActionSpace): self.num_actions = len(self.spaces.action.actions) else: raise ValueError( 'ClassificationHead does not support action spaces of type: {class_name}'.format( class_name=self.spaces.action.__class__.__name__, ) ) def _build_module(self, input_layer): # Standard classification Network self.class_values = self.output = self.dense_layer(self.num_actions)(input_layer, name='output') self.output = tf.nn.softmax(self.class_values) # calculate cross entropy loss self.target = tf.placeholder(tf.float32, shape=(None, self.num_actions), name="target") self.loss = tf.nn.softmax_cross_entropy_with_logits(labels=self.target, logits=self.class_values) tf.losses.add_loss(self.loss) def __str__(self): result = [ "Dense (num outputs = {})".format(self.num_actions) ] return '\n'.join(result)