# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAgentParameters from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent from rl_coach.exploration_policies.bootstrapped import BootstrappedParameters class BootstrappedDQNNetworkParameters(DQNNetworkParameters): def __init__(self): super().__init__() self.heads_parameters[0].num_output_head_copies = 10 self.heads_parameters[0].rescale_gradient_from_head_by_factor = 1.0/self.heads_parameters[0].num_output_head_copies class BootstrappedDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.exploration = BootstrappedParameters() self.network_wrappers = {"main": BootstrappedDQNNetworkParameters()} @property def path(self): return 'rl_coach.agents.bootstrapped_dqn_agent:BootstrappedDQNAgent' # Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf class BootstrappedDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) @property def is_on_policy(self) -> bool: return False def reset_internal_state(self): super().reset_internal_state() self.exploration_policy.select_head() def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() next_states_online_values = self.networks['main'].online_network.predict(batch.next_states(network_keys)) result = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) q_st_plus_1 = result[:self.ap.exploration.architecture_num_q_heads] TD_targets = result[self.ap.exploration.architecture_num_q_heads:] # add Q value samples for logging # initialize with the current prediction so that we will # only update the action that we have actually done in this transition for i in range(batch.size): mask = batch[i].info['mask'] for head_idx in range(self.ap.exploration.architecture_num_q_heads): self.q_values.add_sample(TD_targets[head_idx]) if mask[head_idx] == 1: selected_action = np.argmax(next_states_online_values[head_idx][i], 0) TD_targets[head_idx][i, batch.actions()[i]] = \ batch.rewards()[i] + (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount \ * q_st_plus_1[head_idx][i][selected_action] result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads def observe(self, env_response): mask = np.random.binomial(1, self.ap.exploration.bootstrapped_data_sharing_probability, self.ap.exploration.architecture_num_q_heads) env_response.info['mask'] = mask return super().observe(env_response)