from rl_coach.agents.ddpg_agent import DDPGAgentParameters from rl_coach.architectures.layers import Dense from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.control_suite_environment import ControlSuiteEnvironmentParameters, control_suite_envs from rl_coach.environments.environment import SingleLevelSelection from rl_coach.filters.filter import InputFilter from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = DDPGAgentParameters() agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'] = \ agent_params.network_wrappers['actor'].input_embedders_parameters.pop('observation') agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'] = \ agent_params.network_wrappers['critic'].input_embedders_parameters.pop('observation') agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'].scheme = [Dense(300)] agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(200)] agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'].scheme = [Dense(400)] agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(300)] agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty agent_params.input_filter = InputFilter() agent_params.input_filter.add_reward_filter("rescale", RewardRescaleFilter(1/10.)) ############### # Environment # ############### env_params = ControlSuiteEnvironmentParameters(level=SingleLevelSelection(control_suite_envs)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['cartpole:swingup', 'hopper:hop'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)