# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import namedtuple import numpy as np from typing import List from rl_coach.architectures.architecture import Architecture from rl_coach.core_types import Episode, Batch from rl_coach.off_policy_evaluators.bandits.doubly_robust import DoublyRobust from rl_coach.off_policy_evaluators.rl.sequential_doubly_robust import SequentialDoublyRobust from rl_coach.core_types import Transition OpeSharedStats = namedtuple("OpeSharedStats", ['all_reward_model_rewards', 'all_policy_probs', 'all_v_values_reward_model_based', 'all_rewards', 'all_actions', 'all_old_policy_probs', 'new_policy_prob', 'rho_all_dataset']) OpeEstimation = namedtuple("OpeEstimation", ['ips', 'dm', 'dr', 'seq_dr']) class OpeManager(object): def __init__(self): self.doubly_robust = DoublyRobust() self.sequential_doubly_robust = SequentialDoublyRobust() @staticmethod def _prepare_ope_shared_stats(dataset_as_transitions: List[Transition], batch_size: int, reward_model: Architecture, q_network: Architecture, network_keys: List) -> OpeSharedStats: """ Do the preparations needed for different estimators. Some of the calcuations are shared, so we centralize all the work here. :param dataset_as_transitions: The evaluation dataset in the form of transitions. :param batch_size: The batch size to use. :param reward_model: A reward model to be used by DR :param q_network: The Q network whose its policy we evaluate. :param network_keys: The network keys used for feeding the neural networks. :return: """ # IPS all_reward_model_rewards, all_policy_probs, all_old_policy_probs = [], [], [] all_v_values_reward_model_based, all_v_values_q_model_based, all_rewards, all_actions = [], [], [], [] for i in range(int(len(dataset_as_transitions) / batch_size) + 1): batch = dataset_as_transitions[i * batch_size: (i + 1) * batch_size] batch_for_inference = Batch(batch) all_reward_model_rewards.append(reward_model.predict( batch_for_inference.states(network_keys))) # TODO can we get rid of the 'output_heads[0]', and have some way of a cleaner API? q_values, sm_values = q_network.predict(batch_for_inference.states(network_keys), outputs=[q_network.output_heads[0].output, q_network.output_heads[0].softmax]) # TODO why is this needed? q_values = q_values[0] all_policy_probs.append(sm_values) all_v_values_reward_model_based.append(np.sum(all_policy_probs[-1] * all_reward_model_rewards[-1], axis=1)) all_v_values_q_model_based.append(np.sum(all_policy_probs[-1] * q_values, axis=1)) all_rewards.append(batch_for_inference.rewards()) all_actions.append(batch_for_inference.actions()) all_old_policy_probs.append(batch_for_inference.info('all_action_probabilities') [range(len(batch_for_inference.actions())), batch_for_inference.actions()]) for j, t in enumerate(batch): t.update_info({ 'q_value': q_values[j], 'softmax_policy_prob': all_policy_probs[-1][j], 'v_value_q_model_based': all_v_values_q_model_based[-1][j], }) all_reward_model_rewards = np.concatenate(all_reward_model_rewards, axis=0) all_policy_probs = np.concatenate(all_policy_probs, axis=0) all_v_values_reward_model_based = np.concatenate(all_v_values_reward_model_based, axis=0) all_rewards = np.concatenate(all_rewards, axis=0) all_actions = np.concatenate(all_actions, axis=0) all_old_policy_probs = np.concatenate(all_old_policy_probs, axis=0) # generate model probabilities new_policy_prob = all_policy_probs[np.arange(all_actions.shape[0]), all_actions] rho_all_dataset = new_policy_prob / all_old_policy_probs return OpeSharedStats(all_reward_model_rewards, all_policy_probs, all_v_values_reward_model_based, all_rewards, all_actions, all_old_policy_probs, new_policy_prob, rho_all_dataset) def evaluate(self, dataset_as_episodes: List[Episode], batch_size: int, discount_factor: float, reward_model: Architecture, q_network: Architecture, network_keys: List) -> OpeEstimation: """ Run all the OPEs and get estimations of the current policy performance based on the evaluation dataset. :param dataset_as_episodes: The evaluation dataset. :param batch_size: Batch size to use for the estimators. :param discount_factor: The standard RL discount factor. :param reward_model: A reward model to be used by DR :param q_network: The Q network whose its policy we evaluate. :param network_keys: The network keys used for feeding the neural networks. :return: An OpeEstimation tuple which groups together all the OPE estimations """ # TODO this seems kind of slow, review performance dataset_as_transitions = [t for e in dataset_as_episodes for t in e.transitions] ope_shared_stats = self._prepare_ope_shared_stats(dataset_as_transitions, batch_size, reward_model, q_network, network_keys) ips, dm, dr = self.doubly_robust.evaluate(ope_shared_stats) seq_dr = self.sequential_doubly_robust.evaluate(dataset_as_episodes, discount_factor) return OpeEstimation(ips, dm, dr, seq_dr)