import numpy as np # make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH from carla.driving_benchmark.experiment_suites import CoRL2017 from rl_coach.agents.cil_agent import CILAgentParameters from rl_coach.architectures.tensorflow_components.architecture import Conv2d, Dense from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters from rl_coach.base_parameters import VisualizationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.environments.carla_environment import CarlaEnvironmentParameters, CameraTypes from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter import \ ObservationReductionBySubPartsNameFilter from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import ConstantSchedule from rl_coach.spaces import ImageObservationSpace #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(500) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ################ # Agent Params # ################ agent_params = CILAgentParameters() # forward camera and measurements input agent_params.network_wrappers['main'].input_embedders_parameters = { 'forward_camera': InputEmbedderParameters(scheme=[Conv2d([32, 5, 2]), Conv2d([32, 3, 1]), Conv2d([64, 3, 2]), Conv2d([64, 3, 1]), Conv2d([128, 3, 2]), Conv2d([128, 3, 1]), Conv2d([256, 3, 1]), Conv2d([256, 3, 1]), Dense([512]), Dense([512])], dropout=True, batchnorm=True), 'measurements': InputEmbedderParameters(scheme=[Dense([128]), Dense([128])]) } # TODO: batch norm is currently applied to the fc layers which is not desired # TODO: dropout should be configured differenetly per layer [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [0.5, 1.] * 5 # simple fc middleware agent_params.network_wrappers['main'].middleware_parameters = FCMiddlewareParameters(scheme=[Dense([512])]) # output branches agent_params.network_wrappers['main'].heads_parameters = [ RegressionHeadParameters(), RegressionHeadParameters(), RegressionHeadParameters(), RegressionHeadParameters() ] # agent_params.network_wrappers['main'].num_output_head_copies = 4 # follow lane, left, right, straight agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1, 1, 1, 1] agent_params.network_wrappers['main'].loss_weights = [1, 1, 1, 1] # TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding agent_params.network_wrappers['main'].batch_size = 120 agent_params.network_wrappers['main'].learning_rate = 0.0002 # crop and rescale the image + use only the forward speed measurement agent_params.input_filter = InputFilter() agent_params.input_filter.add_observation_filter('forward_camera', 'cropping', ObservationCropFilter(crop_low=np.array([115, 0, 0]), crop_high=np.array([510, -1, -1]))) agent_params.input_filter.add_observation_filter('forward_camera', 'rescale', ObservationRescaleToSizeFilter( ImageObservationSpace(np.array([88, 200, 3]), high=255))) agent_params.input_filter.add_observation_filter('forward_camera', 'to_uint8', ObservationToUInt8Filter(0, 255)) agent_params.input_filter.add_observation_filter( 'measurements', 'select_speed', ObservationReductionBySubPartsNameFilter( ["forward_speed"], reduction_method=ObservationReductionBySubPartsNameFilter.ReductionMethod.Keep)) # no exploration is used agent_params.exploration = AdditiveNoiseParameters() agent_params.exploration.noise_percentage_schedule = ConstantSchedule(0) agent_params.exploration.evaluation_noise_percentage = 0 # no playing during the training phase agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0) # the CARLA dataset should be downloaded through the following repository: # https://github.com/carla-simulator/imitation-learning # the dataset should then be converted to the Coach format using the script utils/carla_dataset_to_replay_buffer.py # the path to the converted dataset should be updated below agent_params.memory.load_memory_from_file_path = "./datasets/carla_train_set_replay_buffer.p" agent_params.memory.state_key_with_the_class_index = 'high_level_command' agent_params.memory.num_classes = 4 ############### # Environment # ############### env_params = CarlaEnvironmentParameters() env_params.level = 'town1' env_params.cameras = [CameraTypes.FRONT] env_params.camera_height = 600 env_params.camera_width = 800 env_params.allow_braking = False env_params.quality = CarlaEnvironmentParameters.Quality.EPIC env_params.experiment_suite = CoRL2017('Town01') vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = True graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)