# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from agents.actor_critic_agent import * from configurations import * # Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf class DDPGAgent(ActorCriticAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=True) # define critic network self.critic_network = self.main_network # self.networks.append(self.critic_network) # define actor network tuning_parameters.agent.input_types = [InputTypes.Observation] tuning_parameters.agent.output_types = [OutputTypes.Pi] self.actor_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'actor', self.replicated_device, self.worker_device) self.networks.append(self.actor_network) self.q_values = Signal("Q") self.signals.append(self.q_values) self.reset_game(do_not_reset_env=True) def learn_from_batch(self, batch): current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch) # TD error = r + discount*max(q_st_plus_1) - q_st next_actions = self.actor_network.target_network.predict([next_states]) q_st_plus_1 = self.critic_network.target_network.predict([next_states, next_actions]) TD_targets = np.expand_dims(rewards, -1) + \ (1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * q_st_plus_1 # get the gradients of the critic output with respect to the action actions_mean = self.actor_network.online_network.predict(current_states) critic_online_network = self.critic_network.online_network action_gradients = self.critic_network.sess.run(critic_online_network.gradients_wrt_inputs[1], feed_dict={ critic_online_network.inputs[0]: current_states, critic_online_network.inputs[1]: actions_mean, })[0] # train the critic if len(actions.shape) == 1: actions = np.expand_dims(actions, -1) result = self.critic_network.train_and_sync_networks([current_states, actions], TD_targets) total_loss = result[0] # apply the gradients from the critic to the actor actor_online_network = self.actor_network.online_network gradients = self.actor_network.sess.run(actor_online_network.weighted_gradients, feed_dict={ actor_online_network.gradients_weights_ph: -action_gradients, actor_online_network.inputs[0]: current_states }) if self.actor_network.has_global: self.actor_network.global_network.apply_gradients(gradients) self.actor_network.update_online_network() else: self.actor_network.online_network.apply_gradients(gradients) return total_loss def train(self): return Agent.train(self) def choose_action(self, curr_state, phase=RunPhase.TRAIN): assert not self.env.discrete_controls, 'DDPG works only for continuous control problems' # convert to batch so we can run it through the network observation = np.expand_dims(np.array(curr_state['observation']), 0) result = self.actor_network.online_network.predict(observation) action_values = result[0].squeeze() if phase == RunPhase.TRAIN: action = self.exploration_policy.get_action(action_values) else: action = action_values action = np.clip(action, self.env.action_space_low, self.env.action_space_high) # get q value action_batch = np.expand_dims(action, 0) if type(action) != np.ndarray: action_batch = np.array([[action]]) q_value = self.critic_network.online_network.predict([observation, action_batch])[0] self.q_values.add_sample(q_value) action_info = {"action_value": q_value} return action, action_info