# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import tensorflow as tf import numpy as np class MiddlewareEmbedder(object): def __init__(self, activation_function=tf.nn.relu, name="middleware_embedder"): self.name = name self.input = None self.output = None self.activation_function = activation_function def __call__(self, input_layer): with tf.variable_scope(self.get_name()): self.input = input_layer self._build_module() return self.input, self.output def _build_module(self): pass def get_name(self): return self.name class LSTM_Embedder(MiddlewareEmbedder): def _build_module(self): """ self.state_in: tuple of placeholders containing the initial state self.state_out: tuple of output state todo: it appears that the shape of the output is batch, feature the code here seems to be slicing off the first element in the batch which would definitely be wrong. need to double check the shape """ middleware = tf.layers.dense(self.input, 512, activation=self.activation_function, name='fc1') lstm_cell = tf.contrib.rnn.BasicLSTMCell(256, state_is_tuple=True) self.c_init = np.zeros((1, lstm_cell.state_size.c), np.float32) self.h_init = np.zeros((1, lstm_cell.state_size.h), np.float32) self.state_init = [self.c_init, self.h_init] self.c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c]) self.h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h]) self.state_in = (self.c_in, self.h_in) rnn_in = tf.expand_dims(middleware, [0]) step_size = tf.shape(middleware)[:1] state_in = tf.contrib.rnn.LSTMStateTuple(self.c_in, self.h_in) lstm_outputs, lstm_state = tf.nn.dynamic_rnn( lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state self.state_out = (lstm_c[:1, :], lstm_h[:1, :]) self.output = tf.reshape(lstm_outputs, [-1, 256]) class FC_Embedder(MiddlewareEmbedder): def _build_module(self): self.output = tf.layers.dense(self.input, 512, activation=self.activation_function, name='fc1')