# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pickle import numpy as np try: import annoy from annoy import AnnoyIndex except ImportError: from rl_coach.logger import failed_imports failed_imports.append("annoy") class AnnoyDictionary(object): def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01, num_neighbors=50, override_existing_keys=True, rebuild_on_every_update=False): self.rebuild_on_every_update = rebuild_on_every_update self.max_size = dict_size self.curr_size = 0 self.new_value_shift_coefficient = new_value_shift_coefficient self.num_neighbors = num_neighbors self.override_existing_keys = override_existing_keys self.index = AnnoyIndex(key_width, metric='euclidean') self.index.set_seed(1) self.embeddings = np.zeros((dict_size, key_width)) self.values = np.zeros(dict_size) self.additional_data = [None] * dict_size self.lru_timestamps = np.zeros(dict_size) self.current_timestamp = 0.0 # keys that are in this distance will be considered as the same key self.key_error_threshold = key_error_threshold self.initial_update_size = batch_size self.min_update_size = self.initial_update_size self.key_dimension = key_width self.value_dimension = 1 self._reset_buffer() self.built_capacity = 0 def add(self, keys, values, additional_data=None, force_rebuild_tree=False): if not additional_data: additional_data = [None] * len(keys) # Adds new embeddings and values to the dictionary indices = [] indices_to_remove = [] for i in range(keys.shape[0]): index = self._lookup_key_index(keys[i]) if index and self.override_existing_keys: # update existing value self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index]) self.additional_data[index[0][0]] = additional_data[i] self.lru_timestamps[index] = self.current_timestamp indices_to_remove.append(i) else: # add new if self.curr_size >= self.max_size: # find the LRU entry index = np.argmin(self.lru_timestamps) else: index = self.curr_size self.curr_size += 1 self.lru_timestamps[index] = self.current_timestamp indices.append(index) for i in reversed(indices_to_remove): keys = np.delete(keys, i, 0) values = np.delete(values, i, 0) del additional_data[i] self.buffered_keys = np.vstack((self.buffered_keys, keys)) self.buffered_values = np.vstack((self.buffered_values, values)) self.buffered_indices = self.buffered_indices + indices self.buffered_additional_data = self.buffered_additional_data + additional_data if len(self.buffered_indices) >= self.min_update_size: self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02)) self._rebuild_index() elif force_rebuild_tree or self.rebuild_on_every_update: self._rebuild_index() self.current_timestamp += 1 # Returns the stored embeddings and values of the closest embeddings def query(self, keys, k): if not self.has_enough_entries(k): # this will only happen when the DND is not yet populated with enough entries, which is only during heatup # these values won't be used and therefore they are meaningless return [0.0], [0.0], [0], [None] _, indices = self._get_k_nearest_neighbors_indices(keys, k) embeddings = [] values = [] additional_data = [] for ind in indices: self.lru_timestamps[ind] = self.current_timestamp embeddings.append(self.embeddings[ind]) values.append(self.values[ind]) curr_additional_data = [] for sub_ind in ind: curr_additional_data.append(self.additional_data[sub_ind]) additional_data.append(curr_additional_data) self.current_timestamp += 1 return embeddings, values, indices, additional_data def has_enough_entries(self, k): return self.curr_size > k and (self.built_capacity > k) def sample_embeddings(self, num_embeddings): return self.embeddings[np.random.choice(self.curr_size, num_embeddings)] def _get_k_nearest_neighbors_indices(self, keys, k): distances = [] indices = [] for key in keys: index, distance = self.index.get_nns_by_vector(key, k, include_distances=True) distances.append(distance) indices.append(index) return distances, indices def _rebuild_index(self): self.index.unbuild() self.embeddings[self.buffered_indices] = self.buffered_keys self.values[self.buffered_indices] = np.squeeze(self.buffered_values) for i, data in zip(self.buffered_indices, self.buffered_additional_data): self.additional_data[i] = data for idx, key in zip(self.buffered_indices, self.buffered_keys): self.index.add_item(idx, key) self._reset_buffer() self.index.build(self.num_neighbors) self.built_capacity = self.curr_size def _reset_buffer(self): self.buffered_keys = np.zeros((0, self.key_dimension)) self.buffered_values = np.zeros((0, self.value_dimension)) self.buffered_indices = [] self.buffered_additional_data = [] def _lookup_key_index(self, key): distance, index = self._get_k_nearest_neighbors_indices([key], 1) if distance != [[]] and distance[0][0] <= self.key_error_threshold: return index return None class QDND(object): def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01, learning_rate=0.01, num_neighbors=50, return_additional_data=False, override_existing_keys=False, rebuild_on_every_update=False): self.dict_size = dict_size self.key_width = key_width self.num_actions = num_actions self.new_value_shift_coefficient = new_value_shift_coefficient self.key_error_threshold = key_error_threshold self.learning_rate = learning_rate self.num_neighbors = num_neighbors self.return_additional_data = return_additional_data self.override_existing_keys = override_existing_keys self.dicts = [] # create a dict for each action for a in range(num_actions): new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient, key_error_threshold=key_error_threshold, num_neighbors=num_neighbors, override_existing_keys=override_existing_keys, rebuild_on_every_update=rebuild_on_every_update) self.dicts.append(new_dict) def add(self, embeddings, actions, values, additional_data=None): # add a new set of embeddings and values to each of the underlining dictionaries embeddings = np.array(embeddings) actions = np.array(actions) values = np.array(values) for a in range(self.num_actions): idx = np.where(actions == a) curr_action_embeddings = embeddings[idx] curr_action_values = np.expand_dims(values[idx], -1) if additional_data: curr_additional_data = [] for i in idx[0]: curr_additional_data.append(additional_data[i]) else: curr_additional_data = None self.dicts[a].add(curr_action_embeddings, curr_action_values, curr_additional_data) return True def query(self, embeddings, action, k): # query for nearest neighbors to the given embeddings dnd_embeddings = [] dnd_values = [] dnd_indices = [] dnd_additional_data = [] for i in range(len(embeddings)): embedding, value, indices, additional_data = self.dicts[action].query([embeddings[i]], k) dnd_embeddings.append(embedding[0]) dnd_values.append(value[0]) dnd_indices.append(indices[0]) dnd_additional_data.append(additional_data[0]) if self.return_additional_data: return dnd_embeddings, dnd_values, dnd_indices, dnd_additional_data else: return dnd_embeddings, dnd_values, dnd_indices def has_enough_entries(self, k): # check if each of the action dictionaries has at least k entries for a in range(self.num_actions): if not self.dicts[a].has_enough_entries(k): return False return True def update_keys_and_values(self, actions, key_gradients, value_gradients, indices): # Update DND keys and values for batch_action, batch_keys, batch_values, batch_indices in zip(actions, key_gradients, value_gradients, indices): # Update keys (embeddings) and values in DND for i, index in enumerate(batch_indices): self.dicts[batch_action].embeddings[index, :] -= self.learning_rate * batch_keys[i, :] self.dicts[batch_action].values[index] -= self.learning_rate * batch_values[i] def sample_embeddings(self, num_embeddings): num_actions = len(self.dicts) embeddings = [] num_embeddings_per_action = int(num_embeddings/num_actions) for action in range(num_actions): embeddings.append(self.dicts[action].sample_embeddings(num_embeddings_per_action)) embeddings = np.vstack(embeddings) # the numbers did not divide nicely, let's just randomly sample some more embeddings if num_embeddings_per_action * num_actions < num_embeddings: action = np.random.randint(0, num_actions) extra_embeddings = self.dicts[action].sample_embeddings(num_embeddings - num_embeddings_per_action * num_actions) embeddings = np.vstack([embeddings, extra_embeddings]) return embeddings def clean(self): # create a new dict for each action self.dicts = [] for a in range(self.num_actions): new_dict = AnnoyDictionary(self.dict_size, self.key_width, self.new_value_shift_coefficient, key_error_threshold=self.key_error_threshold, num_neighbors=self.num_neighbors) self.dicts.append(new_dict) def load_dnd(model_dir): latest_checkpoint_id = -1 latest_checkpoint = '' # get all checkpoint files for fname in os.listdir(model_dir): path = os.path.join(model_dir, fname) if os.path.isdir(path) or fname.split('.')[-1] != 'srs': continue checkpoint_id = int(fname.split('_')[0]) if checkpoint_id > latest_checkpoint_id: latest_checkpoint = fname latest_checkpoint_id = checkpoint_id with open(os.path.join(model_dir, str(latest_checkpoint)), 'rb') as f: DND = pickle.load(f) for a in range(DND.num_actions): DND.dicts[a].index = AnnoyIndex(512, metric='euclidean') DND.dicts[a].index.set_seed(1) for idx, key in zip(range(DND.dicts[a].curr_size), DND.dicts[a].embeddings[:DND.dicts[a].curr_size]): DND.dicts[a].index.add_item(idx, key) DND.dicts[a].index.build(50) return DND