import math from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.architectures.head_parameters import DuelingQHeadParameters from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4, atari_schedule from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager ######### # Agent # ######### agent_params = DDQNAgentParameters() # since we are using Adam instead of RMSProp, we adjust the learning rate as well agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Empty agent_params.network_wrappers['main'].heads_parameters = \ [DuelingQHeadParameters(rescale_gradient_from_head_by_factor=1/math.sqrt(2))] agent_params.network_wrappers['main'].clip_gradients = 10 ############### # Environment # ############### env_params = Atari(level=SingleLevelSelection(atari_deterministic_v4)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['breakout', 'pong', 'space_invaders'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=atari_schedule, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)