# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ngraph.frontends.neon as neon import ngraph as ng from ngraph.util.names import name_scope class InputEmbedder(object): def __init__(self, input_size, batch_size=None, activation_function=neon.Rectlin(), name="embedder"): self.name = name self.input_size = input_size self.batch_size = batch_size self.activation_function = activation_function self.weights_init = neon.GlorotInit() self.biases_init = neon.ConstantInit() self.input = None self.output = None def __call__(self, prev_input_placeholder=None): with name_scope(self.get_name()): # create the input axes axes = [] if len(self.input_size) == 2: axis_names = ['H', 'W'] else: axis_names = ['C', 'H', 'W'] for axis_size, axis_name in zip(self.input_size, axis_names): axes.append(ng.make_axis(axis_size, name=axis_name)) batch_axis_full = ng.make_axis(self.batch_size, name='N') input_axes = ng.make_axes(axes) if prev_input_placeholder is None: self.input = ng.placeholder(input_axes + [batch_axis_full]) else: self.input = prev_input_placeholder self._build_module() return self.input, self.output(self.input) def _build_module(self): pass def get_name(self): return self.name class ImageEmbedder(InputEmbedder): def __init__(self, input_size, batch_size=None, input_rescaler=255.0, activation_function=neon.Rectlin(), name="embedder"): InputEmbedder.__init__(self, input_size, batch_size, activation_function, name) self.input_rescaler = input_rescaler def _build_module(self): # image observation self.output = neon.Sequential([ neon.Preprocess(functor=lambda x: x / self.input_rescaler), neon.Convolution((8, 8, 32), strides=4, activation=self.activation_function, filter_init=self.weights_init, bias_init=self.biases_init), neon.Convolution((4, 4, 64), strides=2, activation=self.activation_function, filter_init=self.weights_init, bias_init=self.biases_init), neon.Convolution((3, 3, 64), strides=1, activation=self.activation_function, filter_init=self.weights_init, bias_init=self.biases_init) ]) class VectorEmbedder(InputEmbedder): def __init__(self, input_size, batch_size=None, activation_function=neon.Rectlin(), name="embedder"): InputEmbedder.__init__(self, input_size, batch_size, activation_function, name) def _build_module(self): # vector observation self.output = neon.Sequential([ neon.Affine(nout=256, activation=self.activation_function, weight_init=self.weights_init, bias_init=self.biases_init) ])