# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from annoy import AnnoyIndex class AnnoyDictionary(object): def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01): self.max_size = dict_size self.curr_size = 0 self.new_value_shift_coefficient = new_value_shift_coefficient self.index = AnnoyIndex(key_width, metric='euclidean') self.index.set_seed(1) self.embeddings = np.zeros((dict_size, key_width)) self.values = np.zeros(dict_size) self.lru_timestamps = np.zeros(dict_size) self.current_timestamp = 0.0 # keys that are in this distance will be considered as the same key self.key_error_threshold = key_error_threshold self.initial_update_size = batch_size self.min_update_size = self.initial_update_size self.key_dimension = key_width self.value_dimension = 1 self._reset_buffer() self.built_capacity = 0 def add(self, keys, values): # Adds new embeddings and values to the dictionary indices = [] indices_to_remove = [] for i in range(keys.shape[0]): index = self._lookup_key_index(keys[i]) if index: # update existing value self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index]) self.lru_timestamps[index] = self.current_timestamp indices_to_remove.append(i) else: # add new if self.curr_size >= self.max_size: # find the LRU entry index = np.argmin(self.lru_timestamps) else: index = self.curr_size self.curr_size += 1 self.lru_timestamps[index] = self.current_timestamp indices.append(index) for i in reversed(indices_to_remove): keys = np.delete(keys, i, 0) values = np.delete(values, i, 0) self.buffered_keys = np.vstack((self.buffered_keys, keys)) self.buffered_values = np.vstack((self.buffered_values, values)) self.buffered_indices = self.buffered_indices + indices if len(self.buffered_indices) >= self.min_update_size: self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02)) self._rebuild_index() self.current_timestamp += 1 # Returns the stored embeddings and values of the closest embeddings def query(self, keys, k): _, indices = self._get_k_nearest_neighbors_indices(keys, k) embeddings = [] values = [] for ind in indices: self.lru_timestamps[ind] = self.current_timestamp embeddings.append(self.embeddings[ind]) values.append(self.values[ind]) self.current_timestamp += 1 return embeddings, values def has_enough_entries(self, k): return self.curr_size > k and (self.built_capacity > k) def _get_k_nearest_neighbors_indices(self, keys, k): distances = [] indices = [] for key in keys: index, distance = self.index.get_nns_by_vector(key, k, include_distances=True) distances.append(distance) indices.append(index) return distances, indices def _rebuild_index(self): self.index.unbuild() self.embeddings[self.buffered_indices] = self.buffered_keys self.values[self.buffered_indices] = np.squeeze(self.buffered_values) for idx, key in zip(self.buffered_indices, self.buffered_keys): self.index.add_item(idx, key) self._reset_buffer() self.index.build(50) self.built_capacity = self.curr_size def _reset_buffer(self): self.buffered_keys = np.zeros((0, self.key_dimension)) self.buffered_values = np.zeros((0, self.value_dimension)) self.buffered_indices = [] def _lookup_key_index(self, key): distance, index = self._get_k_nearest_neighbors_indices([key], 1) if distance != [[]] and distance[0][0] <= self.key_error_threshold: return index return None class QDND: def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01): self.num_actions = num_actions self.dicts = [] # create a dict for each action for a in range(num_actions): new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient, key_error_threshold=key_error_threshold) self.dicts.append(new_dict) def add(self, embeddings, actions, values): # add a new set of embeddings and values to each of the underlining dictionaries embeddings = np.array(embeddings) actions = np.array(actions) values = np.array(values) for a in range(self.num_actions): idx = np.where(actions == a) curr_action_embeddings = embeddings[idx] curr_action_values = np.expand_dims(values[idx], -1) self.dicts[a].add(curr_action_embeddings, curr_action_values) return True def query(self, embeddings, actions, k): # query for nearest neighbors to the given embeddings dnd_embeddings = [] dnd_values = [] for i, action in enumerate(actions): embedding, value = self.dicts[action].query([embeddings[i]], k) dnd_embeddings.append(embedding[0]) dnd_values.append(value[0]) return dnd_embeddings, dnd_values def has_enough_entries(self, k): # check if each of the action dictionaries has at least k entries for a in range(self.num_actions): if not self.dicts[a].has_enough_entries(k): return False return True