from rl_coach.agents.rainbow_dqn_agent import RainbowDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import EnvironmentSteps from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4 from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentSteps(50000000) schedule_params.steps_between_evaluation_periods = EnvironmentSteps(1000000) schedule_params.evaluation_steps = EnvironmentSteps(125000) schedule_params.heatup_steps = EnvironmentSteps(20000) ######### # Agent # ######### agent_params = RainbowDQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.0000625 agent_params.network_wrappers['main'].optimizer_epsilon = 1.5e-4 agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(32000 // 4) # 32k frames agent_params.memory.beta = LinearSchedule(0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames agent_params.memory.alpha = 0.5 ############### # Environment # ############### env_params = Atari(level=SingleLevelSelection(atari_deterministic_v4)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['breakout', 'pong', 'space_invaders'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)