import os import numpy as np # make sure you have $CARLA_ROOT/PythonClient in your PYTHONPATH from carla.driving_benchmark.experiment_suites import CoRL2017 from rl_coach.logger import screen from rl_coach.agents.cil_agent import CILAgentParameters from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.head_parameters import RegressionHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.architectures.layers import Conv2d, Dense, BatchnormActivationDropout from rl_coach.base_parameters import VisualizationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.carla_environment import CarlaEnvironmentParameters from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_crop_filter import ObservationCropFilter from rl_coach.filters.observation.observation_reduction_by_sub_parts_name_filter import \ ObservationReductionBySubPartsNameFilter from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import ConstantSchedule from rl_coach.spaces import ImageObservationSpace from rl_coach.utilities.carla_dataset_to_replay_buffer import create_dataset from rl_coach.core_types import PickledReplayBuffer #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(500) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ################ # Agent Params # ################ agent_params = CILAgentParameters() # forward camera and measurements input agent_params.network_wrappers['main'].input_embedders_parameters = { 'CameraRGB': InputEmbedderParameters( scheme=[ Conv2d(32, 5, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(32, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(64, 3, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(64, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(128, 3, 2), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(128, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(256, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Conv2d(256, 3, 1), BatchnormActivationDropout(batchnorm=True, activation_function='tanh'), Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3), Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.3) ], activation_function='none' # we define the activation function for each layer explicitly ), 'measurements': InputEmbedderParameters( scheme=[ Dense(128), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5), Dense(128), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5) ], activation_function='none' # we define the activation function for each layer explicitly ) } # simple fc middleware agent_params.network_wrappers['main'].middleware_parameters = \ FCMiddlewareParameters( scheme=[ Dense(512), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5) ], activation_function='none' ) # output branches agent_params.network_wrappers['main'].heads_parameters = [ RegressionHeadParameters( scheme=[ Dense(256), BatchnormActivationDropout(activation_function='tanh', dropout_rate=0.5), Dense(256), BatchnormActivationDropout(activation_function='tanh') ], num_output_head_copies=4 # follow lane, left, right, straight ) ] # TODO: there should be another head predicting the speed which is connected directly to the forward camera embedding agent_params.network_wrappers['main'].batch_size = 120 agent_params.network_wrappers['main'].learning_rate = 0.0002 # crop and rescale the image + use only the forward speed measurement agent_params.input_filter = InputFilter() agent_params.input_filter.add_observation_filter('CameraRGB', 'cropping', ObservationCropFilter(crop_low=np.array([115, 0, 0]), crop_high=np.array([510, -1, -1]))) agent_params.input_filter.add_observation_filter('CameraRGB', 'rescale', ObservationRescaleToSizeFilter( ImageObservationSpace(np.array([88, 200, 3]), high=255))) agent_params.input_filter.add_observation_filter('CameraRGB', 'to_uint8', ObservationToUInt8Filter(0, 255)) agent_params.input_filter.add_observation_filter( 'measurements', 'select_speed', ObservationReductionBySubPartsNameFilter( ["forward_speed"], reduction_method=ObservationReductionBySubPartsNameFilter.ReductionMethod.Keep)) # no exploration is used agent_params.exploration = AdditiveNoiseParameters() agent_params.exploration.noise_schedule = ConstantSchedule(0) agent_params.exploration.evaluation_noise = 0 # no playing during the training phase agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0) # use the following command line to download and extract the CARLA dataset: # python rl_coach/utilities/carla_dataset_to_replay_buffer.py agent_params.memory.load_memory_from_file_path = PickledReplayBuffer("./datasets/carla_train_set_replay_buffer.p") agent_params.memory.state_key_with_the_class_index = 'high_level_command' agent_params.memory.num_classes = 4 # download dataset if it doesn't exist if not os.path.exists(agent_params.memory.load_memory_from_file_path): screen.log_title("The CARLA dataset is not present in the following path: {}" .format(agent_params.memory.load_memory_from_file_path)) result = screen.ask_yes_no("Do you want to download it now?") if result: create_dataset(None, "./datasets/carla_train_set_replay_buffer.p") else: screen.error("Please update the path to the CARLA dataset in the CARLA_CIL preset", crash=True) ############### # Environment # ############### env_params = CarlaEnvironmentParameters() env_params.cameras = ['CameraRGB'] env_params.camera_height = 600 env_params.camera_width = 800 env_params.separate_actions_for_throttle_and_brake = True env_params.allow_braking = True env_params.quality = CarlaEnvironmentParameters.Quality.EPIC env_params.experiment_suite = CoRL2017('Town01') graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters())