from rl_coach.agents.dfp_agent import DFPAgentParameters, HandlingTargetsAfterEpisodeEnd from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(100) ######### # Agent # ######### agent_params = DFPAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium agent_params.network_wrappers['main'].input_embedders_parameters['goal'].scheme = EmbedderScheme.Medium agent_params.network_wrappers['main'].input_embedders_parameters['measurements'].scheme = EmbedderScheme.Medium agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0.01, 3000) agent_params.exploration.evaluation_epsilon = 0.01 agent_params.algorithm.discount = 1.0 agent_params.algorithm.use_accumulated_reward_as_measurement = True agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) agent_params.algorithm.goal_vector = [1] # accumulated_reward agent_params.algorithm.handling_targets_after_episode_end = HandlingTargetsAfterEpisodeEnd.LastStep ############### # Environment # ############### env_params = GymVectorEnvironment(level='CartPole-v0') ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 120 preset_validation_params.max_episodes_to_achieve_reward = 250 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)