from collections import OrderedDict from rl_coach.architectures.layers import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, EmbedderScheme from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.filters.action import BoxDiscretization from rl_coach.filters.filter import OutputFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.agents.wolpertinger_agent import WolpertingerAgentParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentSteps(2000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(3000) ######### # Agent # ######### agent_params = WolpertingerAgentParameters() agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(400)] agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(300)] agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = [Dense(400)] agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(300)] agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty agent_params.output_filter = \ OutputFilter( action_filters=OrderedDict([ ('discretization', BoxDiscretization(num_bins_per_dimension=int(1e6))) ]), is_a_reference_filter=False ) ############### # Environment # ############### env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 500 preset_validation_params.max_episodes_to_achieve_reward = 1000 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)