mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
170 lines
6.9 KiB
Python
170 lines
6.9 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import random
|
|
|
|
import gym
|
|
import numpy as np
|
|
|
|
from environments import environment_wrapper as ew
|
|
import utils
|
|
|
|
|
|
class GymEnvironmentWrapper(ew.EnvironmentWrapper):
|
|
def __init__(self, tuning_parameters):
|
|
ew.EnvironmentWrapper.__init__(self, tuning_parameters)
|
|
|
|
# env parameters
|
|
if ':' in self.env_id:
|
|
self.env = gym.envs.registration.load(self.env_id)()
|
|
else:
|
|
self.env = gym.make(self.env_id)
|
|
|
|
if self.seed is not None:
|
|
self.env.seed(self.seed)
|
|
|
|
# self.env_spec = gym.spec(self.env_id)
|
|
self.env.frameskip = self.frame_skip
|
|
self.discrete_controls = type(self.env.action_space) != gym.spaces.box.Box
|
|
self.random_initialization_steps = 0
|
|
self.state = self.reset(True)['state']
|
|
|
|
# render
|
|
if self.is_rendered:
|
|
image = self.get_rendered_image()
|
|
scale = 1
|
|
if self.human_control:
|
|
scale = 2
|
|
self.renderer.create_screen(image.shape[1]*scale, image.shape[0]*scale)
|
|
|
|
if isinstance(self.env.observation_space, gym.spaces.Dict):
|
|
if 'observation' not in self.env.observation_space:
|
|
raise ValueError((
|
|
'The gym environment provided {env_id} does not contain '
|
|
'"observation" in its observation space. For now this is '
|
|
'required. The environment does include the following '
|
|
'keys in its observation space: {keys}'
|
|
).format(
|
|
env_id=self.env_id,
|
|
keys=self.env.observation_space.keys(),
|
|
))
|
|
|
|
# TODO: collect and store this as observation space instead
|
|
self.is_state_type_image = len(self.state['observation'].shape) > 1
|
|
if self.is_state_type_image:
|
|
self.width = self.state['observation'].shape[1]
|
|
self.height = self.state['observation'].shape[0]
|
|
else:
|
|
self.width = self.state['observation'].shape[0]
|
|
|
|
# action space
|
|
self.actions_description = {}
|
|
if hasattr(self.env.unwrapped, 'get_action_meanings'):
|
|
self.actions_description = self.env.unwrapped.get_action_meanings()
|
|
if self.discrete_controls:
|
|
self.action_space_size = self.env.action_space.n
|
|
self.action_space_abs_range = 0
|
|
else:
|
|
self.action_space_size = self.env.action_space.shape[0]
|
|
self.action_space_high = self.env.action_space.high
|
|
self.action_space_low = self.env.action_space.low
|
|
self.action_space_abs_range = np.maximum(np.abs(self.action_space_low), np.abs(self.action_space_high))
|
|
self.actions = {i: i for i in range(self.action_space_size)}
|
|
self.key_to_action = {}
|
|
if hasattr(self.env.unwrapped, 'get_keys_to_action'):
|
|
self.key_to_action = self.env.unwrapped.get_keys_to_action()
|
|
|
|
# measurements
|
|
if self.env.spec is not None:
|
|
self.timestep_limit = self.env.spec.timestep_limit
|
|
else:
|
|
self.timestep_limit = None
|
|
self.measurements_size = (len(self.step(0)['info'].keys()),)
|
|
self.random_initialization_steps = self.tp.env.random_initialization_steps
|
|
|
|
def _wrap_state(self, state):
|
|
if isinstance(self.env.observation_space, gym.spaces.Dict):
|
|
return state
|
|
else:
|
|
return {'observation': state}
|
|
|
|
def _update_state(self):
|
|
if hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
|
if self.phase == utils.RunPhase.TRAIN and hasattr(self, 'current_ale_lives'):
|
|
# signal termination for life loss
|
|
if self.current_ale_lives != self.env.env.ale.lives():
|
|
self.done = True
|
|
self.current_ale_lives = self.env.env.ale.lives()
|
|
|
|
def _take_action(self, action_idx):
|
|
if action_idx is None:
|
|
action_idx = self.last_action_idx
|
|
|
|
if self.discrete_controls:
|
|
action = self.actions[action_idx]
|
|
else:
|
|
action = action_idx
|
|
|
|
# pendulum-v0 for example expects a list
|
|
if not self.discrete_controls:
|
|
# catching cases where the action for continuous control is a number instead of a list the
|
|
# size of the action space
|
|
if type(action_idx) == int and action_idx == 0:
|
|
# deal with the "reset" action 0
|
|
action = [0] * self.env.action_space.shape[0]
|
|
action = np.array(utils.force_list(action))
|
|
# removing redundant dimensions such that the action size will match the expected action size from gym
|
|
if action.shape != self.env.action_space.shape:
|
|
action = np.squeeze(action)
|
|
action = np.clip(action, self.action_space_low, self.action_space_high)
|
|
|
|
state, self.reward, self.done, self.info = self.env.step(action)
|
|
self.state = self._wrap_state(state)
|
|
|
|
def _preprocess_state(self, state):
|
|
# TODO: move this into wrapper
|
|
# crop image for atari games
|
|
# the image from the environment is 210x160
|
|
if self.tp.env.crop_observation and hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
|
state['observation'] = state['observation'][34:195, :, :]
|
|
return state
|
|
|
|
def _restart_environment_episode(self, force_environment_reset=False):
|
|
# prevent reset of environment if there are ale lives left
|
|
if (hasattr(self.env, 'env') and hasattr(self.env.env, 'ale') and self.env.env.ale.lives() > 0) \
|
|
and not force_environment_reset and not self.env._past_limit():
|
|
return self.state
|
|
|
|
if self.seed:
|
|
self.env.seed(self.seed)
|
|
|
|
self.state = self._wrap_state(self.env.reset())
|
|
|
|
# initialize the number of lives
|
|
if hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
|
self.current_ale_lives = self.env.env.ale.lives()
|
|
|
|
# simulate a random initial environment state by stepping for a random number of times between 0 and 30
|
|
step_count = 0
|
|
random_initialization_steps = random.randint(0, self.random_initialization_steps)
|
|
while self.state is None or step_count < random_initialization_steps:
|
|
step_count += 1
|
|
self.step(0)
|
|
|
|
return self.state
|
|
|
|
def get_rendered_image(self):
|
|
return self.env.render(mode='rgb_array')
|