1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/run_test.py
Roman Dobosz 1b095aeeca Cleanup imports.
Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
2018-04-13 09:58:40 +02:00

219 lines
9.0 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import glob
import os
import shutil
import signal
import subprocess
import sys
import time
import numpy as np
import pandas as pd
import logger
import presets
import utils
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (as configured in presets.py)",
default=None,
type=str)
parser.add_argument('-ip', '--ignore_presets',
help="(string) Name of a preset(s) to ignore (comma separated, and as configured in presets.py)",
default=None,
type=str)
parser.add_argument('-itf', '--ignore_tensorflow',
help="(flag) Don't test TensorFlow presets.",
action='store_true')
parser.add_argument('-in', '--ignore_neon',
help="(flag) Don't test neon presets.",
action='store_true')
parser.add_argument('-v', '--verbose',
help="(flag) display verbose logs in the event of an error",
action='store_true')
parser.add_argument('-l', '--list_presets',
help="(flag) list all the presets that are tested",
action='store_true')
parser.add_argument('--stop_after_first_failure',
help="(flag) stop executing tests after the first error",
action='store_true')
args = parser.parse_args()
if args.preset is not None:
presets_lists = [args.preset]
else:
presets_lists = utils.list_all_classes_in_module(presets)
win_size = 10
fail_count = 0
test_count = 0
read_csv_tries = 70
# create a clean experiment directory
test_name = '__test'
test_path = os.path.join('./experiments', test_name)
if os.path.exists(test_path):
shutil.rmtree(test_path)
if args.ignore_presets is not None:
presets_to_ignore = args.ignore_presets.split(',')
else:
presets_to_ignore = []
if args.list_presets:
for idx, preset_name in enumerate(presets_lists):
preset = eval('presets.{}()'.format(preset_name))
if preset.test and preset_name not in presets_to_ignore:
print(preset_name)
exit(0)
for idx, preset_name in enumerate(presets_lists):
preset = eval('presets.{}()'.format(preset_name))
if preset.test and preset_name not in presets_to_ignore:
frameworks = []
if preset.agent.tensorflow_support and not args.ignore_tensorflow:
frameworks.append('tensorflow')
if preset.agent.neon_support and not args.ignore_neon:
frameworks.append('neon')
for framework in frameworks:
if args.stop_after_first_failure and fail_count > 0:
break
test_count += 1
# run the experiment in a separate thread
logger.screen.log_title("Running test {} - {}".format(preset_name, framework))
log_file_name = 'test_log_{preset_name}_{framework}.txt'.format(
preset_name=preset_name,
framework=framework,
)
cmd = (
'CUDA_VISIBLE_DEVICES='' python3 coach.py '
'-p {preset_name} '
'-f {framework} '
'-e {test_name} '
'-n {num_workers} '
'-cp "seed=0" '
'&> {log_file_name} '
).format(
preset_name=preset_name,
framework=framework,
test_name=test_name,
num_workers=preset.test_num_workers,
log_file_name=log_file_name,
)
p = subprocess.Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid)
# get the csv with the results
csv_path = None
csv_paths = []
if preset.test_num_workers > 1:
# we have an evaluator
reward_str = 'Evaluation Reward'
filename_pattern = 'evaluator*.csv'
else:
reward_str = 'Training Reward'
filename_pattern = 'worker*.csv'
initialization_error = False
test_passed = False
tries_counter = 0
while not csv_paths:
csv_paths = glob.glob(os.path.join(test_path, '*', filename_pattern))
if tries_counter > read_csv_tries:
break
tries_counter += 1
time.sleep(1)
if csv_paths:
csv_path = csv_paths[0]
# verify results
csv = None
time.sleep(1)
averaged_rewards = [0]
last_num_episodes = 0
while csv is None or csv['Episode #'].values[-1] < preset.test_max_step_threshold:
try:
csv = pd.read_csv(csv_path)
except:
# sometimes the csv is being written at the same time we are
# trying to read it. no problem -> try again
continue
if reward_str not in csv.keys():
continue
rewards = csv[reward_str].values
rewards = rewards[~np.isnan(rewards)]
if len(rewards) >= win_size:
averaged_rewards = np.convolve(rewards, np.ones(win_size) / win_size, mode='valid')
else:
time.sleep(1)
continue
# print progress
percentage = int((100*last_num_episodes)/preset.test_max_step_threshold)
sys.stdout.write("\rReward: ({}/{})".format(round(averaged_rewards[-1], 1), preset.test_min_return_threshold))
sys.stdout.write(' Episode: ({}/{})'.format(last_num_episodes, preset.test_max_step_threshold))
sys.stdout.write(' {}%|{}{}| '.format(percentage, '#'*int(percentage/10), ' '*(10-int(percentage/10))))
sys.stdout.flush()
if csv['Episode #'].shape[0] - last_num_episodes <= 0:
continue
last_num_episodes = csv['Episode #'].values[-1]
# check if reward is enough
if np.any(averaged_rewards > preset.test_min_return_threshold):
test_passed = True
break
time.sleep(1)
# kill test and print result
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
if test_passed:
logger.screen.success("Passed successfully")
else:
if csv_paths:
logger.screen.error("Failed due to insufficient reward", crash=False)
logger.screen.error("preset.test_max_step_threshold: {}".format(preset.test_max_step_threshold), crash=False)
logger.screen.error("preset.test_min_return_threshold: {}".format(preset.test_min_return_threshold), crash=False)
logger.screen.error("averaged_rewards: {}".format(averaged_rewards), crash=False)
logger.screen.error("episode number: {}".format(csv['Episode #'].values[-1]), crash=False)
else:
logger.screen.error("csv file never found", crash=False)
if args.verbose:
logger.screen.error("command exitcode: {}".format(p.returncode), crash=False)
logger.screen.error(open(log_file_name).read(), crash=False)
fail_count += 1
shutil.rmtree(test_path)
logger.screen.separator()
if fail_count == 0:
logger.screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
else:
logger.screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")