1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/docs/_modules/rl_coach/exploration_policies/bootstrapped.html
anabwan ddffac8570 fixed release version (#333)
* fixed release version

* update docs
2019-05-28 11:11:15 +03:00

313 lines
19 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>rl_coach.exploration_policies.bootstrapped &mdash; Reinforcement Learning Coach 0.12.0 documentation</title>
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dist_usage.html">Usage - Distributed Coach</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
</ul>
<p class="caption"><span class="caption-text">Design</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
</ul>
<p class="caption"><span class="caption-text">Components</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../components/agents/index.html">Agents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/data_stores/index.html">Data Stores</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/environments/index.html">Environments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/memory_backends/index.html">Memory Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/orchestrators/index.html">Orchestrators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/additional_parameters.html">Additional Parameters</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>rl_coach.exploration_policies.bootstrapped</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for rl_coach.exploration_policies.bootstrapped</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Copyright (c) 2017 Intel Corporation </span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="k">import</span> <span class="n">List</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">rl_coach.core_types</span> <span class="k">import</span> <span class="n">RunPhase</span><span class="p">,</span> <span class="n">ActionType</span>
<span class="kn">from</span> <span class="nn">rl_coach.exploration_policies.additive_noise</span> <span class="k">import</span> <span class="n">AdditiveNoiseParameters</span>
<span class="kn">from</span> <span class="nn">rl_coach.exploration_policies.e_greedy</span> <span class="k">import</span> <span class="n">EGreedy</span><span class="p">,</span> <span class="n">EGreedyParameters</span>
<span class="kn">from</span> <span class="nn">rl_coach.exploration_policies.exploration_policy</span> <span class="k">import</span> <span class="n">ExplorationParameters</span>
<span class="kn">from</span> <span class="nn">rl_coach.schedules</span> <span class="k">import</span> <span class="n">Schedule</span><span class="p">,</span> <span class="n">LinearSchedule</span>
<span class="kn">from</span> <span class="nn">rl_coach.spaces</span> <span class="k">import</span> <span class="n">ActionSpace</span>
<span class="k">class</span> <span class="nc">BootstrappedParameters</span><span class="p">(</span><span class="n">EGreedyParameters</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">architecture_num_q_heads</span> <span class="o">=</span> <span class="mi">10</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bootstrapped_data_sharing_probability</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">epsilon_schedule</span> <span class="o">=</span> <span class="n">LinearSchedule</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">,</span> <span class="mi">1000000</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">path</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">&#39;rl_coach.exploration_policies.bootstrapped:Bootstrapped&#39;</span>
<div class="viewcode-block" id="Bootstrapped"><a class="viewcode-back" href="../../../components/exploration_policies/index.html#rl_coach.exploration_policies.bootstrapped.Bootstrapped">[docs]</a><span class="k">class</span> <span class="nc">Bootstrapped</span><span class="p">(</span><span class="n">EGreedy</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Bootstrapped exploration policy is currently only used for discrete action spaces along with the</span>
<span class="sd"> Bootstrapped DQN agent. It assumes that there is an ensemble of network heads, where each one predicts the</span>
<span class="sd"> values for all the possible actions. For each episode, a single head is selected to lead the agent, according</span>
<span class="sd"> to its value predictions. In evaluation, the action is selected using a majority vote over all the heads</span>
<span class="sd"> predictions.</span>
<span class="sd"> .. note::</span>
<span class="sd"> This exploration policy will only work for Discrete action spaces with Bootstrapped DQN style agents,</span>
<span class="sd"> since it requires the agent to have a network with multiple heads.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">action_space</span><span class="p">:</span> <span class="n">ActionSpace</span><span class="p">,</span> <span class="n">epsilon_schedule</span><span class="p">:</span> <span class="n">Schedule</span><span class="p">,</span> <span class="n">evaluation_epsilon</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">architecture_num_q_heads</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">continuous_exploration_policy_parameters</span><span class="p">:</span> <span class="n">ExplorationParameters</span> <span class="o">=</span> <span class="n">AdditiveNoiseParameters</span><span class="p">(),):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param action_space: the action space used by the environment</span>
<span class="sd"> :param epsilon_schedule: a schedule for the epsilon values</span>
<span class="sd"> :param evaluation_epsilon: the epsilon value to use for evaluation phases</span>
<span class="sd"> :param continuous_exploration_policy_parameters: the parameters of the continuous exploration policy to use</span>
<span class="sd"> if the e-greedy is used for a continuous policy</span>
<span class="sd"> :param architecture_num_q_heads: the number of q heads to select from</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">action_space</span><span class="p">,</span> <span class="n">epsilon_schedule</span><span class="p">,</span> <span class="n">evaluation_epsilon</span><span class="p">,</span> <span class="n">continuous_exploration_policy_parameters</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_heads</span> <span class="o">=</span> <span class="n">architecture_num_q_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">selected_head</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">last_action_values</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">def</span> <span class="nf">select_head</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">selected_head</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_heads</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">get_action</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">action_values</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">ActionType</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">ActionType</span><span class="p">:</span>
<span class="c1"># action values are none in case the exploration policy is going to select a random action</span>
<span class="k">if</span> <span class="n">action_values</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">phase</span> <span class="o">==</span> <span class="n">RunPhase</span><span class="o">.</span><span class="n">TRAIN</span><span class="p">:</span>
<span class="n">action_values</span> <span class="o">=</span> <span class="n">action_values</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">selected_head</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># ensemble voting for evaluation</span>
<span class="n">top_action_votings</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">action_values</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">counts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">bincount</span><span class="p">(</span><span class="n">top_action_votings</span><span class="o">.</span><span class="n">squeeze</span><span class="p">())</span>
<span class="n">top_action</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span>
<span class="c1"># convert the top action to a one hot vector and pass it to e-greedy</span>
<span class="n">action_values</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">eye</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">actions</span><span class="p">))[[</span><span class="n">top_action</span><span class="p">]]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">last_action_values</span> <span class="o">=</span> <span class="n">action_values</span>
<span class="k">return</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">get_action</span><span class="p">(</span><span class="n">action_values</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">get_control_param</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">selected_head</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2018-2019, Intel AI Lab
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>