mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 03:00:20 +01:00
227 lines
11 KiB
Python
227 lines
11 KiB
Python
#
|
|
# Copyright (c) 2019 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
from typing import Union
|
|
from collections import OrderedDict
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.agent import Agent
|
|
from rl_coach.agents.ddpg_agent import DDPGAgent
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.architectures.head_parameters import DDPGActorHeadParameters, TD3VHeadParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \
|
|
AgentParameters, EmbedderScheme
|
|
from rl_coach.core_types import ActionInfo, TrainingSteps, Transition
|
|
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
from rl_coach.spaces import BoxActionSpace, GoalsSpace
|
|
|
|
|
|
class TD3CriticNetworkParameters(NetworkParameters):
|
|
def __init__(self, num_q_networks):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters(),
|
|
'action': InputEmbedderParameters(scheme=EmbedderScheme.Shallow)}
|
|
self.middleware_parameters = FCMiddlewareParameters(num_streams=num_q_networks)
|
|
self.heads_parameters = [TD3VHeadParameters()]
|
|
self.optimizer_type = 'Adam'
|
|
self.adam_optimizer_beta2 = 0.999
|
|
self.optimizer_epsilon = 1e-8
|
|
self.batch_size = 100
|
|
self.async_training = False
|
|
self.learning_rate = 0.001
|
|
self.create_target_network = True
|
|
self.shared_optimizer = True
|
|
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
|
|
|
|
|
|
class TD3ActorNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.middleware_parameters = FCMiddlewareParameters()
|
|
self.heads_parameters = [DDPGActorHeadParameters(batchnorm=False)]
|
|
self.optimizer_type = 'Adam'
|
|
self.adam_optimizer_beta2 = 0.999
|
|
self.optimizer_epsilon = 1e-8
|
|
self.batch_size = 100
|
|
self.async_training = False
|
|
self.learning_rate = 0.001
|
|
self.create_target_network = True
|
|
self.shared_optimizer = True
|
|
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
|
|
|
|
|
|
class TD3AlgorithmParameters(AlgorithmParameters):
|
|
"""
|
|
:param num_steps_between_copying_online_weights_to_target: (StepMethod)
|
|
The number of steps between copying the online network weights to the target network weights.
|
|
|
|
:param rate_for_copying_weights_to_target: (float)
|
|
When copying the online network weights to the target network weights, a soft update will be used, which
|
|
weight the new online network weights by rate_for_copying_weights_to_target
|
|
|
|
:param num_consecutive_playing_steps: (StepMethod)
|
|
The number of consecutive steps to act between every two training iterations
|
|
|
|
:param use_target_network_for_evaluation: (bool)
|
|
If set to True, the target network will be used for predicting the actions when choosing actions to act.
|
|
Since the target network weights change more slowly, the predicted actions will be more consistent.
|
|
|
|
:param action_penalty: (float)
|
|
The amount by which to penalize the network on high action feature (pre-activation) values.
|
|
This can prevent the actions features from saturating the TanH activation function, and therefore prevent the
|
|
gradients from becoming very low.
|
|
|
|
:param clip_critic_targets: (Tuple[float, float] or None)
|
|
The range to clip the critic target to in order to prevent overestimation of the action values.
|
|
|
|
:param use_non_zero_discount_for_terminal_states: (bool)
|
|
If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state
|
|
values. If set to False, the terminal states reward will be taken as the target return for the network.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.rate_for_copying_weights_to_target = 0.005
|
|
self.use_target_network_for_evaluation = False
|
|
self.action_penalty = 0
|
|
self.clip_critic_targets = None # expected to be a tuple of the form (min_clip_value, max_clip_value) or None
|
|
self.use_non_zero_discount_for_terminal_states = False
|
|
self.act_for_full_episodes = True
|
|
self.update_policy_every_x_episode_steps = 2
|
|
self.num_steps_between_copying_online_weights_to_target = TrainingSteps(self.update_policy_every_x_episode_steps)
|
|
self.policy_noise = 0.2
|
|
self.noise_clipping = 0.5
|
|
self.num_q_networks = 2
|
|
|
|
|
|
class TD3AgentExplorationParameters(AdditiveNoiseParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.noise_as_percentage_from_action_space = False
|
|
|
|
|
|
class TD3AgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
td3_algorithm_params = TD3AlgorithmParameters()
|
|
super().__init__(algorithm=td3_algorithm_params,
|
|
exploration=TD3AgentExplorationParameters(),
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks=OrderedDict([("actor", TD3ActorNetworkParameters()),
|
|
("critic",
|
|
TD3CriticNetworkParameters(td3_algorithm_params.num_q_networks))]))
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.td3_agent:TD3Agent'
|
|
|
|
|
|
# Twin Delayed DDPG - https://arxiv.org/pdf/1802.09477.pdf
|
|
class TD3Agent(DDPGAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
self.q_values = self.register_signal("Q")
|
|
self.TD_targets_signal = self.register_signal("TD targets")
|
|
self.action_signal = self.register_signal("actions")
|
|
|
|
@property
|
|
def is_on_policy(self) -> bool:
|
|
return False
|
|
|
|
def learn_from_batch(self, batch):
|
|
actor = self.networks['actor']
|
|
critic = self.networks['critic']
|
|
|
|
actor_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys()
|
|
critic_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys()
|
|
|
|
# TD error = r + discount*max(q_st_plus_1) - q_st
|
|
next_actions, actions_mean = actor.parallel_prediction([
|
|
(actor.target_network, batch.next_states(actor_keys)),
|
|
(actor.online_network, batch.states(actor_keys))
|
|
])
|
|
|
|
# add noise to the next_actions
|
|
noise = np.random.normal(0, self.ap.algorithm.policy_noise, next_actions.shape).clip(
|
|
-self.ap.algorithm.noise_clipping, self.ap.algorithm.noise_clipping)
|
|
next_actions = self.spaces.action.clip_action_to_space(next_actions + noise)
|
|
|
|
critic_inputs = copy.copy(batch.next_states(critic_keys))
|
|
critic_inputs['action'] = next_actions
|
|
q_st_plus_1 = critic.target_network.predict(critic_inputs)[2] # output #2 is the min (Q1, Q2)
|
|
|
|
# calculate the bootstrapped TD targets while discounting terminal states according to
|
|
# use_non_zero_discount_for_terminal_states
|
|
if self.ap.algorithm.use_non_zero_discount_for_terminal_states:
|
|
TD_targets = batch.rewards(expand_dims=True) + self.ap.algorithm.discount * q_st_plus_1
|
|
else:
|
|
TD_targets = batch.rewards(expand_dims=True) + \
|
|
(1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * q_st_plus_1
|
|
|
|
# clip the TD targets to prevent overestimation errors
|
|
if self.ap.algorithm.clip_critic_targets:
|
|
TD_targets = np.clip(TD_targets, *self.ap.algorithm.clip_critic_targets)
|
|
|
|
self.TD_targets_signal.add_sample(TD_targets)
|
|
|
|
# train the critic
|
|
critic_inputs = copy.copy(batch.states(critic_keys))
|
|
critic_inputs['action'] = batch.actions(len(batch.actions().shape) == 1)
|
|
result = critic.train_and_sync_networks(critic_inputs, TD_targets)
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
if self.training_iteration % self.ap.algorithm.update_policy_every_x_episode_steps == 0:
|
|
# get the gradients of output #3 (=mean of Q1 network) w.r.t the action
|
|
critic_inputs = copy.copy(batch.states(critic_keys))
|
|
critic_inputs['action'] = actions_mean
|
|
action_gradients = critic.online_network.predict(critic_inputs,
|
|
outputs=critic.online_network.gradients_wrt_inputs[3]['action'])
|
|
|
|
# apply the gradients from the critic to the actor
|
|
initial_feed_dict = {actor.online_network.gradients_weights_ph[0]: -action_gradients}
|
|
gradients = actor.online_network.predict(batch.states(actor_keys),
|
|
outputs=actor.online_network.weighted_gradients[0],
|
|
initial_feed_dict=initial_feed_dict)
|
|
|
|
if actor.has_global:
|
|
actor.apply_gradients_to_global_network(gradients)
|
|
actor.update_online_network()
|
|
else:
|
|
actor.apply_gradients_to_online_network(gradients)
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def train(self):
|
|
self.ap.algorithm.num_consecutive_training_steps = self.current_episode_steps_counter
|
|
return Agent.train(self)
|
|
|
|
def update_transition_before_adding_to_replay_buffer(self, transition: Transition) -> Transition:
|
|
"""
|
|
Allows agents to update the transition just before adding it to the replay buffer.
|
|
Can be useful for agents that want to tweak the reward, termination signal, etc.
|
|
|
|
:param transition: the transition to update
|
|
:return: the updated transition
|
|
"""
|
|
transition.game_over = False if self.current_episode_steps_counter ==\
|
|
self.parent_level_manager.environment.env._max_episode_steps\
|
|
else transition.game_over
|
|
|
|
return transition |