1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
shadiendrawis 0896f43097 Robosuite exploration (#478)
* Add Robosuite parameters for all env types + initialize env flow

* Init flow done

* Rest of Environment API complete for RobosuiteEnvironment

* RobosuiteEnvironment changes

* Observation stacking filter
* Add proper frame_skip in addition to control_freq
* Hardcode Coach rendering to 'frontview' camera

* Robosuite_Lift_DDPG preset + Robosuite env updates

* Move observation stacking filter from env to preset
* Pre-process observation - concatenate depth map (if exists)
  to image and object state (if exists) to robot state
* Preset parameters based on Surreal DDPG parameters, taken from:
  https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py

* RobosuiteEnvironment fixes - working now with PyGame rendering

* Preset minor modifications

* ObservationStackingFilter - option to concat non-vector observations

* Consider frame skip when setting horizon in robosuite env

* Robosuite lift preset - update heatup length and training interval

* Robosuite env - change control_freq to 10 to match Surreal usage

* Robosuite clipped PPO preset

* Distribute multiple workers (-n #) over multiple GPUs

* Clipped PPO memory optimization from @shadiendrawis

* Fixes to evaluation only workers

* RoboSuite_ClippedPPO: Update training interval

* Undo last commit (update training interval)

* Fix "doube-negative" if conditions

* multi-agent single-trainer clipped ppo training with cartpole

* cleanups (not done yet) + ~tuned hyper-params for mast

* Switch to Robosuite v1 APIs

* Change presets to IK controller

* more cleanups + enabling evaluation worker + better logging

* RoboSuite_Lift_ClippedPPO updates

* Fix major bug in obs normalization filter setup

* Reduce coupling between Robosuite API and Coach environment

* Now only non task-specific parameters are explicitly defined
  in Coach
* Removed a bunch of enums of Robosuite elements, using simple
  strings instead
* With this change new environments/robots/controllers in Robosuite
  can be used immediately in Coach

* MAST: better logging of actor-trainer interaction + bug fixes + performance improvements.

Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals

* lstm support for ppo

* setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters

* Separate Robosuite clipped PPO preset for the non-MAST case

* Add flatten layer to architectures and use it in Robosuite presets

This is required for embedders that mix conv and dense

TODO: Add MXNet implementation

* publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups

* bug-fix for memory leak in MAST

* Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance

* Explicit activations in embedder scheme so there's no ReLU after flatten

* Add clipped PPO heads with configurable dense layers at the beginning

* This is a workaround needed to mimic Surreal-PPO, where the CNN and
  LSTM are shared between actor and critic but the FC layers are not
  shared
* Added a "SchemeBuilder" class, currently only used for the new heads
  but we can change Middleware and Embedder implementations to use it
  as well

* Video dump setting fix in basic preset

* logging screen output to file

* coach to start the redis-server for a MAST run

* trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal

* Add missing set_internal_state function in TFSharedRunningStats

* Robosuite preset - use SingleLevelSelect instead of hard-coded level

* policy ID published directly on Redis

* Small fix when writing to log file

* Major bugfix in Robosuite presets - pass dense sizes to heads

* RoboSuite_Lift_ClippedPPO hyper-params update

* add horizon and value bootstrap to GAE calculation, fix A3C with LSTM

* adam hyper-params from mujoco

* updated MAST preset with IK_POSE_POS controller

* configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard

* values loss weighting of 0.5

* minor fixes + presets

* bug-fix for MAST  where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish

* bug-fix: reset_internal_state was not called by the trainer

* bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200

* adding back the horizon hyper-param - a messy commit

* another bug-fix missing from prev commit

* set control_freq=2 to match action_scale 0.125

* ClippedPPO with MAST cleanups and some preps for TD3 with MAST

* TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8)

* setting termination on collision to be on by default

* bug-fix following prev-prev commit

* initial cube exploration environment with TD3 commit

* bug fix + minor refactoring

* several parameter changes and RND debugging

* Robosuite Gym wrapper + Rename TD3_Random* -> Random*

* algorithm update

* Add RoboSuite v1 env + presets (to eventually replace non-v1 ones)

* Remove grasping presets, keep only V1 exp. presets (w/o V1 tag)

* Keep just robosuite V1 env as the 'robosuite_environment' module

* Exclude Robosuite and MAST presets from integration tests

* Exclude LSTM and MAST presets from golden tests

* Fix mistakenly removed import

* Revert debug changes in ReaderWriterLock

* Try another way to exclude LSTM/MAST golden tests

* Remove debug prints

* Remove PreDense heads, unused in the end

* Missed removing an instance of PreDense head

* Remove MAST, not required for this PR

* Undo unused concat option in ObservationStackingFilter

* Remove LSTM updates, not required in this PR

* Update README.md

* code changes for the exploration flow to work with robosuite master branch

* code cleanup + documentation

* jupyter tutorial for the goal-based exploration + scatter plot

* typo fix

* Update README.md

* seprate parameter for the obs-goal observation + small fixes

* code clarity fixes

* adjustment in tutorial 5

* Update tutorial

* Update tutorial

Co-authored-by: Guy Jacob <guy.jacob@intel.com>
Co-authored-by: Gal Leibovich <gal.leibovich@intel.com>
Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
2021-06-01 00:34:19 +03:00

291 lines
10 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
from types import FunctionType
import tensorflow as tf
from rl_coach.architectures import layers
from rl_coach.architectures.tensorflow_components import utils
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout_rate, is_training, name):
layers = [input_layer]
# Rationale: passing a bool here will mean that batchnorm and or activation will never activate
assert not isinstance(is_training, bool)
# batchnorm
if batchnorm:
layers.append(
tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training)
)
# activation
if activation_function:
if isinstance(activation_function, str):
activation_function = utils.get_activation_function(activation_function)
layers.append(
activation_function(layers[-1], name="{}_activation".format(name))
)
# dropout
if dropout_rate > 0:
layers.append(
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
)
# remove the input layer from the layers list
del layers[0]
return layers
# define global dictionary for storing layer type to layer implementation mapping
tf_layer_dict = dict()
tf_layer_class_dict = dict()
def reg_to_tf_instance(layer_type) -> FunctionType:
""" function decorator that registers layer implementation
:return: decorated function
"""
def reg_impl_decorator(func):
assert layer_type not in tf_layer_dict
tf_layer_dict[layer_type] = func
return func
return reg_impl_decorator
def reg_to_tf_class(layer_type) -> FunctionType:
""" function decorator that registers layer type
:return: decorated function
"""
def reg_impl_decorator(func):
assert layer_type not in tf_layer_class_dict
tf_layer_class_dict[layer_type] = func
return func
return reg_impl_decorator
def convert_layer(layer):
"""
If layer instance is callable (meaning this is already a concrete TF class), return layer, otherwise convert to TF type
:param layer: layer to be converted
:return: converted layer if not callable, otherwise layer itself
"""
if callable(layer):
return layer
return tf_layer_dict[type(layer)](layer)
def convert_layer_class(layer_class):
"""
If layer instance is callable, return layer, otherwise convert to TF type
:param layer: layer to be converted
:return: converted layer if not callable, otherwise layer itself
"""
if hasattr(layer_class, 'to_tf_instance'):
return layer_class
else:
return tf_layer_class_dict[layer_class]()
class Conv2d(layers.Conv2d):
def __init__(self, num_filters: int, kernel_size: int, strides: int):
super(Conv2d, self).__init__(num_filters=num_filters, kernel_size=kernel_size, strides=strides)
def __call__(self, input_layer, name: str=None, is_training=None, kernel_initializer=None):
"""
returns a tensorflow conv2d layer
:param input_layer: previous layer
:param name: layer name
:return: conv2d layer
"""
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.strides, data_format='channels_last', name=name,
kernel_initializer=kernel_initializer)
@staticmethod
@reg_to_tf_instance(layers.Conv2d)
def to_tf_instance(base: layers.Conv2d):
return Conv2d(
num_filters=base.num_filters,
kernel_size=base.kernel_size,
strides=base.strides)
@staticmethod
@reg_to_tf_class(layers.Conv2d)
def to_tf_class():
return Conv2d
class BatchnormActivationDropout(layers.BatchnormActivationDropout):
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
super(BatchnormActivationDropout, self).__init__(
batchnorm=batchnorm, activation_function=activation_function, dropout_rate=dropout_rate)
def __call__(self, input_layer, name: str=None, is_training=None):
"""
returns a list of tensorflow batchnorm, activation and dropout layers
:param input_layer: previous layer
:param name: layer name
:return: batchnorm, activation and dropout layers
"""
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
activation_function=self.activation_function,
dropout_rate=self.dropout_rate,
is_training=is_training, name=name)
@staticmethod
@reg_to_tf_instance(layers.BatchnormActivationDropout)
def to_tf_instance(base: layers.BatchnormActivationDropout):
return BatchnormActivationDropout(
batchnorm=base.batchnorm,
activation_function=base.activation_function,
dropout_rate=base.dropout_rate)
@staticmethod
@reg_to_tf_class(layers.BatchnormActivationDropout)
def to_tf_class():
return BatchnormActivationDropout
class Dense(layers.Dense):
def __init__(self, units: int):
super(Dense, self).__init__(units=units)
def __call__(self, input_layer, name: str=None, kernel_initializer=None, bias_initializer=None,
activation=None, is_training=None):
"""
returns a tensorflow dense layer
:param input_layer: previous layer
:param name: layer name
:return: dense layer
"""
if bias_initializer is None:
bias_initializer = tf.zeros_initializer()
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
activation=activation, bias_initializer=bias_initializer)
@staticmethod
@reg_to_tf_instance(layers.Dense)
def to_tf_instance(base: layers.Dense):
return Dense(units=base.units)
@staticmethod
@reg_to_tf_class(layers.Dense)
def to_tf_class():
return Dense
class NoisyNetDense(layers.NoisyNetDense):
"""
A factorized Noisy Net layer
https://arxiv.org/abs/1706.10295.
"""
def __init__(self, units: int):
super(NoisyNetDense, self).__init__(units=units)
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None,
bias_initializer=None):
"""
returns a NoisyNet dense layer
:param input_layer: previous layer
:param name: layer name
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
:param activation: the activation function
:return: dense layer
"""
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
def _f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def _factorized_noise(inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = _f(tf.random_normal((inputs, 1)))
noise2 = _f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.units
stddev = 1 / math.sqrt(num_inputs)
activation = activation if activation is not None else (lambda x: x)
if kernel_initializer is None:
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
else:
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
if bias_initializer is None:
bias_initializer = tf.zeros_initializer()
with tf.variable_scope(None, default_name=name):
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
initializer=kernel_mean_initializer)
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=bias_initializer)
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = _f(tf.random_normal((num_outputs,)))
weight_noise = _factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
@staticmethod
@reg_to_tf_instance(layers.NoisyNetDense)
def to_tf_instance(base: layers.NoisyNetDense):
return NoisyNetDense(units=base.units)
@staticmethod
@reg_to_tf_class(layers.NoisyNetDense)
def to_tf_class():
return NoisyNetDense
class Flatten(layers.Flatten):
def __init__(self):
super(Flatten, self).__init__()
def __call__(self, input_layer, **kwargs):
"""
returns a tensorflow flatten layer
:param input_layer: previous layer
:return: flatten layer
"""
return tf.contrib.layers.flatten(input_layer)
@staticmethod
@reg_to_tf_instance(layers.Flatten)
def to_tf_instance(base: layers.Flatten):
return Flatten()
@staticmethod
@reg_to_tf_class(layers.Flatten)
def to_tf_class():
return Flatten