mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
149 lines
6.7 KiB
Python
149 lines
6.7 KiB
Python
from copy import deepcopy
|
|
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
|
|
|
from rl_coach.architectures.tensorflow_components.layers import Dense
|
|
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
|
|
from rl_coach.environments.gym_environment import GymVectorEnvironment
|
|
from rl_coach.filters.filter import InputFilter
|
|
from rl_coach.filters.reward import RewardRescaleFilter
|
|
from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager
|
|
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
|
from rl_coach.memories.memory import MemoryGranularity
|
|
from rl_coach.schedules import LinearSchedule
|
|
from rl_coach.memories.episodic import EpisodicExperienceReplayParameters
|
|
from rl_coach.architectures.head_parameters import ClassificationHeadParameters
|
|
from rl_coach.agents.ddqn_bcq_agent import DDQNBCQAgentParameters
|
|
|
|
from rl_coach.agents.ddqn_bcq_agent import KNNParameters
|
|
from rl_coach.agents.ddqn_bcq_agent import NNImitationModelParameters
|
|
|
|
DATASET_SIZE = 10000
|
|
|
|
####################
|
|
# Graph Scheduling #
|
|
####################
|
|
|
|
schedule_params = ScheduleParameters()
|
|
schedule_params.improve_steps = TrainingSteps(10000000000)
|
|
schedule_params.steps_between_evaluation_periods = TrainingSteps(1)
|
|
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
|
|
schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE)
|
|
|
|
#########
|
|
# Agent #
|
|
#########
|
|
|
|
# using a set of 'unstable' hyper-params to showcase the value of BCQ. Using the same hyper-params with standard DDQN
|
|
# will cause Q values to unboundedly increase, and the policy convergence to be unstable.
|
|
agent_params = DDQNBCQAgentParameters()
|
|
agent_params.network_wrappers['main'].batch_size = 128
|
|
# agent_params.network_wrappers['main'].batch_size = 1024
|
|
|
|
# DQN params
|
|
|
|
# For making this become Fitted Q-Iteration we can keep the targets constant for the entire dataset size -
|
|
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
|
DATASET_SIZE / agent_params.network_wrappers['main'].batch_size)
|
|
#
|
|
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
|
100)
|
|
# agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
|
|
|
agent_params.algorithm.discount = 0.98
|
|
|
|
# can use either a kNN or a NN based model for predicting which actions not to max over in the bellman equation
|
|
agent_params.algorithm.action_drop_method_parameters = KNNParameters()
|
|
# agent_params.algorithm.action_drop_method_parameters = NNImitationModelParameters()
|
|
# agent_params.algorithm.action_drop_method_parameters.imitation_model_num_epochs = 500
|
|
|
|
# NN configuration
|
|
agent_params.network_wrappers['main'].learning_rate = 0.0001
|
|
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
|
|
agent_params.network_wrappers['main'].l2_regularization = 0.0001
|
|
agent_params.network_wrappers['main'].softmax_temperature = 0.2
|
|
|
|
# reward model params
|
|
agent_params.network_wrappers['reward_model'] = deepcopy(agent_params.network_wrappers['main'])
|
|
agent_params.network_wrappers['reward_model'].learning_rate = 0.0001
|
|
agent_params.network_wrappers['reward_model'].l2_regularization = 0
|
|
|
|
agent_params.network_wrappers['imitation_model'] = deepcopy(agent_params.network_wrappers['main'])
|
|
agent_params.network_wrappers['imitation_model'].learning_rate = 0.0001
|
|
agent_params.network_wrappers['imitation_model'].l2_regularization = 0
|
|
|
|
agent_params.network_wrappers['imitation_model'].heads_parameters = [ClassificationHeadParameters()]
|
|
agent_params.network_wrappers['imitation_model'].input_embedders_parameters['observation'].scheme = \
|
|
[Dense(1024), Dense(1024), Dense(512), Dense(512), Dense(256)]
|
|
agent_params.network_wrappers['imitation_model'].middleware_parameters.scheme = [Dense(128), Dense(64)]
|
|
|
|
|
|
# ER size
|
|
agent_params.memory = EpisodicExperienceReplayParameters()
|
|
|
|
# E-Greedy schedule
|
|
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
|
|
agent_params.exploration.evaluation_epsilon = 0
|
|
|
|
# Input filtering
|
|
agent_params.input_filter = InputFilter()
|
|
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/200.))
|
|
|
|
|
|
|
|
|
|
# Experience Generating Agent parameters
|
|
experience_generating_agent_params = DQNAgentParameters()
|
|
|
|
# schedule parameters
|
|
experience_generating_schedule_params = ScheduleParameters()
|
|
experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000)
|
|
experience_generating_schedule_params.improve_steps = TrainingSteps(
|
|
DATASET_SIZE - experience_generating_schedule_params.heatup_steps.num_steps)
|
|
experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
|
|
experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
|
|
|
# DQN params
|
|
experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
|
experience_generating_agent_params.algorithm.discount = 0.99
|
|
experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
|
|
|
|
# NN configuration
|
|
experience_generating_agent_params.network_wrappers['main'].learning_rate = 0.00025
|
|
experience_generating_agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
|
|
|
|
# ER size
|
|
experience_generating_agent_params.memory = EpisodicExperienceReplayParameters()
|
|
experience_generating_agent_params.memory.max_size = \
|
|
(MemoryGranularity.Transitions,
|
|
experience_generating_schedule_params.heatup_steps.num_steps +
|
|
experience_generating_schedule_params.improve_steps.num_steps)
|
|
|
|
# E-Greedy schedule
|
|
experience_generating_agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
|
|
|
|
|
################
|
|
# Environment #
|
|
################
|
|
env_params = GymVectorEnvironment(level='CartPole-v0')
|
|
|
|
########
|
|
# Test #
|
|
########
|
|
preset_validation_params = PresetValidationParameters()
|
|
preset_validation_params.test = True
|
|
preset_validation_params.min_reward_threshold = 150
|
|
preset_validation_params.max_episodes_to_achieve_reward = 50
|
|
preset_validation_params.read_csv_tries = 500
|
|
|
|
graph_manager = BatchRLGraphManager(agent_params=agent_params,
|
|
experience_generating_agent_params=experience_generating_agent_params,
|
|
experience_generating_schedule_params=experience_generating_schedule_params,
|
|
env_params=env_params,
|
|
schedule_params=schedule_params,
|
|
vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
|
|
preset_validation_params=preset_validation_params,
|
|
reward_model_num_epochs=30,
|
|
train_to_eval_ratio=0.4)
|