1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/presets/Mujoco_TD3.py
Gal Leibovich 7eb884c5b2 TD3 (#338)
2019-06-16 11:11:21 +03:00

50 lines
2.2 KiB
Python

from rl_coach.agents.td3_agent import TD3AgentParameters
from rl_coach.architectures.layers import Dense
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, EmbedderScheme
from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.environment import SingleLevelSelection
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = EnvironmentSteps(1000000)
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(5000)
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
schedule_params.heatup_steps = EnvironmentSteps(10000)
#########
# Agent #
#########
agent_params = TD3AgentParameters()
agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(400)]
agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(300)]
agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = EmbedderScheme.Empty
agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty
agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(400), Dense(300)]
###############
# Environment #
###############
env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2))
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 500
preset_validation_params.max_episodes_to_achieve_reward = 1100
preset_validation_params.reward_test_level = 'hopper'
preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper']
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)