mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
291 lines
10 KiB
Python
291 lines
10 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import math
|
|
from types import FunctionType
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures import layers
|
|
from rl_coach.architectures.tensorflow_components import utils
|
|
|
|
|
|
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout_rate, is_training, name):
|
|
layers = [input_layer]
|
|
|
|
# Rationale: passing a bool here will mean that batchnorm and or activation will never activate
|
|
assert not isinstance(is_training, bool)
|
|
|
|
# batchnorm
|
|
if batchnorm:
|
|
layers.append(
|
|
tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training)
|
|
)
|
|
|
|
# activation
|
|
if activation_function:
|
|
if isinstance(activation_function, str):
|
|
activation_function = utils.get_activation_function(activation_function)
|
|
layers.append(
|
|
activation_function(layers[-1], name="{}_activation".format(name))
|
|
)
|
|
|
|
# dropout
|
|
if dropout_rate > 0:
|
|
layers.append(
|
|
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
|
|
)
|
|
|
|
# remove the input layer from the layers list
|
|
del layers[0]
|
|
|
|
return layers
|
|
|
|
|
|
# define global dictionary for storing layer type to layer implementation mapping
|
|
tf_layer_dict = dict()
|
|
tf_layer_class_dict = dict()
|
|
|
|
|
|
def reg_to_tf_instance(layer_type) -> FunctionType:
|
|
""" function decorator that registers layer implementation
|
|
:return: decorated function
|
|
"""
|
|
def reg_impl_decorator(func):
|
|
assert layer_type not in tf_layer_dict
|
|
tf_layer_dict[layer_type] = func
|
|
return func
|
|
return reg_impl_decorator
|
|
|
|
|
|
def reg_to_tf_class(layer_type) -> FunctionType:
|
|
""" function decorator that registers layer type
|
|
:return: decorated function
|
|
"""
|
|
def reg_impl_decorator(func):
|
|
assert layer_type not in tf_layer_class_dict
|
|
tf_layer_class_dict[layer_type] = func
|
|
return func
|
|
return reg_impl_decorator
|
|
|
|
|
|
def convert_layer(layer):
|
|
"""
|
|
If layer instance is callable (meaning this is already a concrete TF class), return layer, otherwise convert to TF type
|
|
:param layer: layer to be converted
|
|
:return: converted layer if not callable, otherwise layer itself
|
|
"""
|
|
if callable(layer):
|
|
return layer
|
|
return tf_layer_dict[type(layer)](layer)
|
|
|
|
|
|
def convert_layer_class(layer_class):
|
|
"""
|
|
If layer instance is callable, return layer, otherwise convert to TF type
|
|
:param layer: layer to be converted
|
|
:return: converted layer if not callable, otherwise layer itself
|
|
"""
|
|
if hasattr(layer_class, 'to_tf_instance'):
|
|
return layer_class
|
|
else:
|
|
return tf_layer_class_dict[layer_class]()
|
|
|
|
|
|
class Conv2d(layers.Conv2d):
|
|
def __init__(self, num_filters: int, kernel_size: int, strides: int):
|
|
super(Conv2d, self).__init__(num_filters=num_filters, kernel_size=kernel_size, strides=strides)
|
|
|
|
def __call__(self, input_layer, name: str=None, is_training=None, kernel_initializer=None):
|
|
"""
|
|
returns a tensorflow conv2d layer
|
|
:param input_layer: previous layer
|
|
:param name: layer name
|
|
:return: conv2d layer
|
|
"""
|
|
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
|
|
strides=self.strides, data_format='channels_last', name=name,
|
|
kernel_initializer=kernel_initializer)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_instance(layers.Conv2d)
|
|
def to_tf_instance(base: layers.Conv2d):
|
|
return Conv2d(
|
|
num_filters=base.num_filters,
|
|
kernel_size=base.kernel_size,
|
|
strides=base.strides)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_class(layers.Conv2d)
|
|
def to_tf_class():
|
|
return Conv2d
|
|
|
|
|
|
class BatchnormActivationDropout(layers.BatchnormActivationDropout):
|
|
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
|
|
super(BatchnormActivationDropout, self).__init__(
|
|
batchnorm=batchnorm, activation_function=activation_function, dropout_rate=dropout_rate)
|
|
|
|
def __call__(self, input_layer, name: str=None, is_training=None):
|
|
"""
|
|
returns a list of tensorflow batchnorm, activation and dropout layers
|
|
:param input_layer: previous layer
|
|
:param name: layer name
|
|
:return: batchnorm, activation and dropout layers
|
|
"""
|
|
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
|
|
activation_function=self.activation_function,
|
|
dropout_rate=self.dropout_rate,
|
|
is_training=is_training, name=name)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_instance(layers.BatchnormActivationDropout)
|
|
def to_tf_instance(base: layers.BatchnormActivationDropout):
|
|
return BatchnormActivationDropout(
|
|
batchnorm=base.batchnorm,
|
|
activation_function=base.activation_function,
|
|
dropout_rate=base.dropout_rate)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_class(layers.BatchnormActivationDropout)
|
|
def to_tf_class():
|
|
return BatchnormActivationDropout
|
|
|
|
|
|
class Dense(layers.Dense):
|
|
def __init__(self, units: int):
|
|
super(Dense, self).__init__(units=units)
|
|
|
|
def __call__(self, input_layer, name: str=None, kernel_initializer=None, bias_initializer=None,
|
|
activation=None, is_training=None):
|
|
"""
|
|
returns a tensorflow dense layer
|
|
:param input_layer: previous layer
|
|
:param name: layer name
|
|
:return: dense layer
|
|
"""
|
|
if bias_initializer is None:
|
|
bias_initializer = tf.zeros_initializer()
|
|
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
|
|
activation=activation, bias_initializer=bias_initializer)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_instance(layers.Dense)
|
|
def to_tf_instance(base: layers.Dense):
|
|
return Dense(units=base.units)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_class(layers.Dense)
|
|
def to_tf_class():
|
|
return Dense
|
|
|
|
|
|
class NoisyNetDense(layers.NoisyNetDense):
|
|
"""
|
|
A factorized Noisy Net layer
|
|
|
|
https://arxiv.org/abs/1706.10295.
|
|
"""
|
|
|
|
def __init__(self, units: int):
|
|
super(NoisyNetDense, self).__init__(units=units)
|
|
|
|
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None,
|
|
bias_initializer=None):
|
|
"""
|
|
returns a NoisyNet dense layer
|
|
:param input_layer: previous layer
|
|
:param name: layer name
|
|
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
|
|
:param activation: the activation function
|
|
:return: dense layer
|
|
"""
|
|
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
|
|
# forward (either act or train, both for online and target networks).
|
|
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
|
|
|
|
def _f(values):
|
|
return tf.sqrt(tf.abs(values)) * tf.sign(values)
|
|
|
|
def _factorized_noise(inputs, outputs):
|
|
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
|
|
# lighter algos (e.g. DQN) should not use it
|
|
noise1 = _f(tf.random_normal((inputs, 1)))
|
|
noise2 = _f(tf.random_normal((1, outputs)))
|
|
return tf.matmul(noise1, noise2)
|
|
|
|
num_inputs = input_layer.get_shape()[-1].value
|
|
num_outputs = self.units
|
|
|
|
stddev = 1 / math.sqrt(num_inputs)
|
|
activation = activation if activation is not None else (lambda x: x)
|
|
|
|
if kernel_initializer is None:
|
|
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
|
|
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
|
|
else:
|
|
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
|
|
if bias_initializer is None:
|
|
bias_initializer = tf.zeros_initializer()
|
|
with tf.variable_scope(None, default_name=name):
|
|
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
|
|
initializer=kernel_mean_initializer)
|
|
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=bias_initializer)
|
|
|
|
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
|
|
initializer=kernel_stddev_initializer)
|
|
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
|
|
initializer=kernel_stddev_initializer)
|
|
bias_noise = _f(tf.random_normal((num_outputs,)))
|
|
weight_noise = _factorized_noise(num_inputs, num_outputs)
|
|
|
|
bias = bias_mean + bias_stddev * bias_noise
|
|
weight = weight_mean + weight_stddev * weight_noise
|
|
return activation(tf.matmul(input_layer, weight) + bias)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_instance(layers.NoisyNetDense)
|
|
def to_tf_instance(base: layers.NoisyNetDense):
|
|
return NoisyNetDense(units=base.units)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_class(layers.NoisyNetDense)
|
|
def to_tf_class():
|
|
return NoisyNetDense
|
|
|
|
|
|
class Flatten(layers.Flatten):
|
|
def __init__(self):
|
|
super(Flatten, self).__init__()
|
|
|
|
def __call__(self, input_layer, **kwargs):
|
|
"""
|
|
returns a tensorflow flatten layer
|
|
:param input_layer: previous layer
|
|
:return: flatten layer
|
|
"""
|
|
return tf.contrib.layers.flatten(input_layer)
|
|
|
|
@staticmethod
|
|
@reg_to_tf_instance(layers.Flatten)
|
|
def to_tf_instance(base: layers.Flatten):
|
|
return Flatten()
|
|
|
|
@staticmethod
|
|
@reg_to_tf_class(layers.Flatten)
|
|
def to_tf_class():
|
|
return Flatten
|