mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* Add Robosuite parameters for all env types + initialize env flow * Init flow done * Rest of Environment API complete for RobosuiteEnvironment * RobosuiteEnvironment changes * Observation stacking filter * Add proper frame_skip in addition to control_freq * Hardcode Coach rendering to 'frontview' camera * Robosuite_Lift_DDPG preset + Robosuite env updates * Move observation stacking filter from env to preset * Pre-process observation - concatenate depth map (if exists) to image and object state (if exists) to robot state * Preset parameters based on Surreal DDPG parameters, taken from: https://github.com/SurrealAI/surreal/blob/master/surreal/main/ddpg_configs.py * RobosuiteEnvironment fixes - working now with PyGame rendering * Preset minor modifications * ObservationStackingFilter - option to concat non-vector observations * Consider frame skip when setting horizon in robosuite env * Robosuite lift preset - update heatup length and training interval * Robosuite env - change control_freq to 10 to match Surreal usage * Robosuite clipped PPO preset * Distribute multiple workers (-n #) over multiple GPUs * Clipped PPO memory optimization from @shadiendrawis * Fixes to evaluation only workers * RoboSuite_ClippedPPO: Update training interval * Undo last commit (update training interval) * Fix "doube-negative" if conditions * multi-agent single-trainer clipped ppo training with cartpole * cleanups (not done yet) + ~tuned hyper-params for mast * Switch to Robosuite v1 APIs * Change presets to IK controller * more cleanups + enabling evaluation worker + better logging * RoboSuite_Lift_ClippedPPO updates * Fix major bug in obs normalization filter setup * Reduce coupling between Robosuite API and Coach environment * Now only non task-specific parameters are explicitly defined in Coach * Removed a bunch of enums of Robosuite elements, using simple strings instead * With this change new environments/robots/controllers in Robosuite can be used immediately in Coach * MAST: better logging of actor-trainer interaction + bug fixes + performance improvements. Still missing: fixed pubsub for obs normalization running stats + logging for trainer signals * lstm support for ppo * setting JOINT VELOCITY action space by default + fix for EveryNEpisodes video dump filter + new TaskIDDumpFilter + allowing or between video dump filters * Separate Robosuite clipped PPO preset for the non-MAST case * Add flatten layer to architectures and use it in Robosuite presets This is required for embedders that mix conv and dense TODO: Add MXNet implementation * publishing running_stats together with the published policy + hyper-param for when to publish a policy + cleanups * bug-fix for memory leak in MAST * Bugfix: Return value in TF BatchnormActivationDropout.to_tf_instance * Explicit activations in embedder scheme so there's no ReLU after flatten * Add clipped PPO heads with configurable dense layers at the beginning * This is a workaround needed to mimic Surreal-PPO, where the CNN and LSTM are shared between actor and critic but the FC layers are not shared * Added a "SchemeBuilder" class, currently only used for the new heads but we can change Middleware and Embedder implementations to use it as well * Video dump setting fix in basic preset * logging screen output to file * coach to start the redis-server for a MAST run * trainer drops off-policy data + old policy in ClippedPPO updates only after policy was published + logging free memory stats + actors check for a new policy only at the beginning of a new episode + fixed a bug where the trainer was logging "Training Reward = 0", causing dashboard to incorrectly display the signal * Add missing set_internal_state function in TFSharedRunningStats * Robosuite preset - use SingleLevelSelect instead of hard-coded level * policy ID published directly on Redis * Small fix when writing to log file * Major bugfix in Robosuite presets - pass dense sizes to heads * RoboSuite_Lift_ClippedPPO hyper-params update * add horizon and value bootstrap to GAE calculation, fix A3C with LSTM * adam hyper-params from mujoco * updated MAST preset with IK_POSE_POS controller * configurable initialization for policy stdev + custom extra noise per actor + logging of policy stdev to dashboard * values loss weighting of 0.5 * minor fixes + presets * bug-fix for MAST where the old policy in the trainer had kept updating every training iter while it should only update after every policy publish * bug-fix: reset_internal_state was not called by the trainer * bug-fixes in the lstm flow + some hyper-param adjustments for CartPole_ClippedPPO_LSTM -> training and sometimes reaches 200 * adding back the horizon hyper-param - a messy commit * another bug-fix missing from prev commit * set control_freq=2 to match action_scale 0.125 * ClippedPPO with MAST cleanups and some preps for TD3 with MAST * TD3 presets. RoboSuite_Lift_TD3 seems to work well with multi-process runs (-n 8) * setting termination on collision to be on by default * bug-fix following prev-prev commit * initial cube exploration environment with TD3 commit * bug fix + minor refactoring * several parameter changes and RND debugging * Robosuite Gym wrapper + Rename TD3_Random* -> Random* * algorithm update * Add RoboSuite v1 env + presets (to eventually replace non-v1 ones) * Remove grasping presets, keep only V1 exp. presets (w/o V1 tag) * Keep just robosuite V1 env as the 'robosuite_environment' module * Exclude Robosuite and MAST presets from integration tests * Exclude LSTM and MAST presets from golden tests * Fix mistakenly removed import * Revert debug changes in ReaderWriterLock * Try another way to exclude LSTM/MAST golden tests * Remove debug prints * Remove PreDense heads, unused in the end * Missed removing an instance of PreDense head * Remove MAST, not required for this PR * Undo unused concat option in ObservationStackingFilter * Remove LSTM updates, not required in this PR * Update README.md * code changes for the exploration flow to work with robosuite master branch * code cleanup + documentation * jupyter tutorial for the goal-based exploration + scatter plot * typo fix * Update README.md * seprate parameter for the obs-goal observation + small fixes * code clarity fixes * adjustment in tutorial 5 * Update tutorial * Update tutorial Co-authored-by: Guy Jacob <guy.jacob@intel.com> Co-authored-by: Gal Leibovich <gal.leibovich@intel.com> Co-authored-by: shadi.endrawis <sendrawi@aipg-ra-skx-03.ra.intel.com>
253 lines
12 KiB
Python
253 lines
12 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
from enum import Enum
|
|
from typing import Union, List
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.filters.observation.observation_move_axis_filter import ObservationMoveAxisFilter
|
|
|
|
try:
|
|
from pysc2 import maps
|
|
from pysc2.env import sc2_env
|
|
from pysc2.env import available_actions_printer
|
|
from pysc2.lib import actions
|
|
from pysc2.lib import features
|
|
from pysc2.env import environment
|
|
from absl import app
|
|
from absl import flags
|
|
except ImportError:
|
|
from rl_coach.logger import failed_imports
|
|
failed_imports.append("PySc2")
|
|
|
|
from rl_coach.environments.environment import Environment, EnvironmentParameters, LevelSelection
|
|
from rl_coach.base_parameters import VisualizationParameters
|
|
from rl_coach.spaces import BoxActionSpace, VectorObservationSpace, PlanarMapsObservationSpace, StateSpace, CompoundActionSpace, \
|
|
DiscreteActionSpace
|
|
from rl_coach.filters.filter import InputFilter, OutputFilter
|
|
from rl_coach.filters.observation.observation_rescale_to_size_filter import ObservationRescaleToSizeFilter
|
|
from rl_coach.filters.action.linear_box_to_box_map import LinearBoxToBoxMap
|
|
from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter
|
|
|
|
FLAGS = flags.FLAGS
|
|
FLAGS(['coach.py'])
|
|
|
|
SCREEN_SIZE = 84 # will also impact the action space size
|
|
|
|
# Starcraft Constants
|
|
_NOOP = actions.FUNCTIONS.no_op.id
|
|
_MOVE_SCREEN = actions.FUNCTIONS.Move_screen.id
|
|
_SELECT_ARMY = actions.FUNCTIONS.select_army.id
|
|
_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index
|
|
_NOT_QUEUED = [0]
|
|
_SELECT_ALL = [0]
|
|
|
|
|
|
class StarcraftObservationType(Enum):
|
|
Features = 0
|
|
RGB = 1
|
|
|
|
|
|
StarcraftInputFilter = InputFilter(is_a_reference_filter=True)
|
|
StarcraftInputFilter.add_observation_filter('screen', 'move_axis', ObservationMoveAxisFilter(0, -1))
|
|
StarcraftInputFilter.add_observation_filter('screen', 'rescaling',
|
|
ObservationRescaleToSizeFilter(
|
|
PlanarMapsObservationSpace(np.array([84, 84, 1]),
|
|
low=0, high=255, channels_axis=-1)))
|
|
StarcraftInputFilter.add_observation_filter('screen', 'to_uint8', ObservationToUInt8Filter(0, 255))
|
|
|
|
StarcraftInputFilter.add_observation_filter('minimap', 'move_axis', ObservationMoveAxisFilter(0, -1))
|
|
StarcraftInputFilter.add_observation_filter('minimap', 'rescaling',
|
|
ObservationRescaleToSizeFilter(
|
|
PlanarMapsObservationSpace(np.array([64, 64, 1]),
|
|
low=0, high=255, channels_axis=-1)))
|
|
StarcraftInputFilter.add_observation_filter('minimap', 'to_uint8', ObservationToUInt8Filter(0, 255))
|
|
|
|
|
|
StarcraftNormalizingOutputFilter = OutputFilter(is_a_reference_filter=True)
|
|
StarcraftNormalizingOutputFilter.add_action_filter(
|
|
'normalization', LinearBoxToBoxMap(input_space_low=-SCREEN_SIZE / 2, input_space_high=SCREEN_SIZE / 2 - 1))
|
|
|
|
|
|
class StarCraft2EnvironmentParameters(EnvironmentParameters):
|
|
def __init__(self, level=None):
|
|
super().__init__(level=level)
|
|
self.screen_size = 84
|
|
self.minimap_size = 64
|
|
self.feature_minimap_maps_to_use = range(7)
|
|
self.feature_screen_maps_to_use = range(17)
|
|
self.observation_type = StarcraftObservationType.Features
|
|
self.disable_fog = False
|
|
self.auto_select_all_army = True
|
|
self.default_input_filter = StarcraftInputFilter
|
|
self.default_output_filter = StarcraftNormalizingOutputFilter
|
|
self.use_full_action_space = False
|
|
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.environments.starcraft2_environment:StarCraft2Environment'
|
|
|
|
|
|
# Environment
|
|
class StarCraft2Environment(Environment):
|
|
def __init__(self, level: LevelSelection, frame_skip: int, visualization_parameters: VisualizationParameters,
|
|
target_success_rate: float=1.0, seed: Union[None, int]=None, human_control: bool=False,
|
|
custom_reward_threshold: Union[int, float]=None,
|
|
screen_size: int=84, minimap_size: int=64,
|
|
feature_minimap_maps_to_use: List=range(7), feature_screen_maps_to_use: List=range(17),
|
|
observation_type: StarcraftObservationType=StarcraftObservationType.Features,
|
|
disable_fog: bool=False, auto_select_all_army: bool=True,
|
|
use_full_action_space: bool=False, **kwargs):
|
|
super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters,
|
|
target_success_rate)
|
|
|
|
self.screen_size = screen_size
|
|
self.minimap_size = minimap_size
|
|
self.feature_minimap_maps_to_use = feature_minimap_maps_to_use
|
|
self.feature_screen_maps_to_use = feature_screen_maps_to_use
|
|
self.observation_type = observation_type
|
|
self.features_screen_size = None
|
|
self.feature_minimap_size = None
|
|
self.rgb_screen_size = None
|
|
self.rgb_minimap_size = None
|
|
if self.observation_type == StarcraftObservationType.Features:
|
|
self.features_screen_size = screen_size
|
|
self.feature_minimap_size = minimap_size
|
|
elif self.observation_type == StarcraftObservationType.RGB:
|
|
self.rgb_screen_size = screen_size
|
|
self.rgb_minimap_size = minimap_size
|
|
self.disable_fog = disable_fog
|
|
self.auto_select_all_army = auto_select_all_army
|
|
self.use_full_action_space = use_full_action_space
|
|
|
|
# step_mul is the equivalent to frame skipping. Not sure if it repeats actions in between or not though.
|
|
self.env = sc2_env.SC2Env(map_name=self.env_id, step_mul=frame_skip,
|
|
visualize=self.is_rendered,
|
|
agent_interface_format=sc2_env.AgentInterfaceFormat(
|
|
feature_dimensions=sc2_env.Dimensions(
|
|
screen=self.features_screen_size,
|
|
minimap=self.feature_minimap_size
|
|
)
|
|
# rgb_dimensions=sc2_env.Dimensions(
|
|
# screen=self.rgb_screen_size,
|
|
# minimap=self.rgb_screen_size
|
|
# )
|
|
),
|
|
# feature_screen_size=self.features_screen_size,
|
|
# feature_minimap_size=self.feature_minimap_size,
|
|
# rgb_screen_size=self.rgb_screen_size,
|
|
# rgb_minimap_size=self.rgb_screen_size,
|
|
disable_fog=disable_fog,
|
|
random_seed=self.seed
|
|
)
|
|
|
|
# print all the available actions
|
|
# self.env = available_actions_printer.AvailableActionsPrinter(self.env)
|
|
|
|
self.reset_internal_state(True)
|
|
|
|
"""
|
|
feature_screen: [height_map, visibility_map, creep, power, player_id, player_relative, unit_type, selected,
|
|
unit_hit_points, unit_hit_points_ratio, unit_energy, unit_energy_ratio, unit_shields,
|
|
unit_shields_ratio, unit_density, unit_density_aa, effects]
|
|
feature_minimap: [height_map, visibility_map, creep, camera, player_id, player_relative, selecte
|
|
d]
|
|
player: [player_id, minerals, vespene, food_cap, food_army, food_workers, idle_worker_dount,
|
|
army_count, warp_gate_count, larva_count]
|
|
"""
|
|
self.screen_shape = np.array(self.env.observation_spec()[0]['feature_screen'])
|
|
self.screen_shape[0] = len(self.feature_screen_maps_to_use)
|
|
self.minimap_shape = np.array(self.env.observation_spec()[0]['feature_minimap'])
|
|
self.minimap_shape[0] = len(self.feature_minimap_maps_to_use)
|
|
self.state_space = StateSpace({
|
|
"screen": PlanarMapsObservationSpace(shape=self.screen_shape, low=0, high=255, channels_axis=0),
|
|
"minimap": PlanarMapsObservationSpace(shape=self.minimap_shape, low=0, high=255, channels_axis=0),
|
|
"measurements": VectorObservationSpace(self.env.observation_spec()[0]["player"][0])
|
|
})
|
|
if self.use_full_action_space:
|
|
action_identifiers = list(self.env.action_spec()[0].functions)
|
|
num_action_identifiers = len(action_identifiers)
|
|
action_arguments = [(arg.name, arg.sizes) for arg in self.env.action_spec()[0].types]
|
|
sub_action_spaces = [DiscreteActionSpace(num_action_identifiers)]
|
|
for argument in action_arguments:
|
|
for dimension in argument[1]:
|
|
sub_action_spaces.append(DiscreteActionSpace(dimension))
|
|
self.action_space = CompoundActionSpace(sub_action_spaces)
|
|
else:
|
|
self.action_space = BoxActionSpace(2, 0, self.screen_size - 1, ["X-Axis, Y-Axis"],
|
|
default_action=np.array([self.screen_size/2, self.screen_size/2]))
|
|
|
|
self.target_success_rate = target_success_rate
|
|
|
|
def _update_state(self):
|
|
timestep = 0
|
|
self.screen = self.last_result[timestep].observation.feature_screen
|
|
# extract only the requested segmentation maps from the observation
|
|
self.screen = np.take(self.screen, self.feature_screen_maps_to_use, axis=0)
|
|
self.minimap = self.last_result[timestep].observation.feature_minimap
|
|
self.measurements = self.last_result[timestep].observation.player
|
|
self.reward = self.last_result[timestep].reward
|
|
self.done = self.last_result[timestep].step_type == environment.StepType.LAST
|
|
self.state = {
|
|
'screen': self.screen,
|
|
'minimap': self.minimap,
|
|
'measurements': self.measurements
|
|
}
|
|
|
|
def _take_action(self, action):
|
|
if self.use_full_action_space:
|
|
action_identifier = action[0]
|
|
action_arguments = action[1:]
|
|
action = actions.FunctionCall(action_identifier, action_arguments)
|
|
else:
|
|
coord = np.array(action[0:2])
|
|
noop = False
|
|
coord = coord.round()
|
|
coord = np.clip(coord, 0, SCREEN_SIZE - 1)
|
|
self.last_action_idx = coord
|
|
|
|
if noop:
|
|
action = actions.FunctionCall(_NOOP, [])
|
|
else:
|
|
action = actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
|
|
|
|
self.last_result = self.env.step(actions=[action])
|
|
|
|
def _restart_environment_episode(self, force_environment_reset=False):
|
|
# reset the environment
|
|
self.last_result = self.env.reset()
|
|
|
|
# select all the units on the screen
|
|
if self.auto_select_all_army:
|
|
self.env.step(actions=[actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])
|
|
|
|
def get_rendered_image(self):
|
|
screen = np.squeeze(np.tile(np.expand_dims(self.screen, -1), (1, 1, 3)))
|
|
screen = screen / np.max(screen) * 255
|
|
return screen.astype('uint8')
|
|
|
|
def dump_video_of_last_episode(self):
|
|
from rl_coach.logger import experiment_path
|
|
self.env._run_config.replay_dir = experiment_path
|
|
self.env.save_replay('replays')
|
|
super().dump_video_of_last_episode()
|
|
|
|
def get_target_success_rate(self):
|
|
return self.target_success_rate
|